Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

boundary element methods for soil structure interaction
PREMIUM
Số trang
439
Kích thước
13.0 MB
Định dạng
PDF
Lượt xem
1822

boundary element methods for soil structure interaction

Nội dung xem thử

Mô tả chi tiết

Boundary Element Methods for Soil-Structure Interaction

This page intentionally left blank

Boundary Element Methods for

Soil-Structure Interaction

Edited by

W.S. HALL

University of Teesside,

Middlesbrough, United Kingdom

and

G. OLIVETO

University of Catania,

Catania, Italy

KLUWER ACADEMIC PUBLISHERS

NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-48387-4

Print ISBN: 1-4020-1300-0

©2004 Kluwer Academic Publishers

New York, Boston, Dordrecht, London, Moscow

Print ©2003 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,

mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com

and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht

CONTENTS

INTRODUCTION

W S Hall (Teesside), G Oliveto (Catania)

xvii

PART 1. SOIL-STRUCTURE INTERACTION

1. TWENTY FIVE YEARS OF BOUNDARY ELEMENTS FOR

DYNAMIC SOIL-STRUCTURE INTERACTION

J Dominguez (Seville)

1

9

13

16

20

24

28

31

34

35

36

37

38

39

42

1.

2.

Introduction

Dynamic Stiffness of Foundations

2.1.

2.2.

2.3.

2.4.

THREE-DIMENSIONAL FOUNDATIONS

3.

4.

Seismic Response of Foundations

Dynamic Soil-Water-Structure Interaction. Seismic

Response of Dams

4.1 FLUID-SOLID INTERFACES

5. Gravity Dams

5.1.

5.2.

5.3

5.4.

5.5.

DAM ON A RIGID FOUNDATION.

EMPTY RESERVOIR

DAM ON A RIGID FOUNDATION.

RESERVOIR FULL OF WATER

DAM ON A FLEXIBLE FOUNDATION.

EMPTY RESERVOIR

DAM ON A FLEXIBLE FOUNDATION.

RESERVOIR FULL OF WATER

BOTTOM SEDIMENT EFFECTS

STRIP FOUNDATIONS

AXISYMMETRIC FOUNDATIONS

FOUNDATIONS ON SATURATED

POROELASTIC SOILS

vi

44

45

46

49

51

56

57

61

61

62

63

64

65

65

66

66

66

67

68

68

68

69

69

69

69

70

70

71

73

74

74

74

6. Arch Dams

6.1.

6.2.

6.3.

6.4.

6.5

DAM ON A RIGID FOUNDATION.

EMPTY RESERVOIR

DAM ON A FLEXIBLE FOUNDATION.

EMPTY RESERVOIR

DAM ON A FLEXIBLE FOUNDATION.

RESERVOIR FULL OF WATER

TRAVELLING WAVE EFFECTS

POROELASTIC SEDIMENT EFFECTS

7. References

2. COMPUTATIONAL SOIL-STRUCTURE INTERACTION

D Clouteau (Paris), D Aubry (Paris)

1. Introduction

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

PHYSICAL MODELS

NUMERICAL MODELS

HETEROGENEITIES IN THE BEM

TIME DOMAIN BEM/ FREQUENCY

DOMAIN BEM

STOCHASTIC APPROACH

UNBOUNDED STRUCTURES

GUIDELINES

2. Physical and Mathematical Models

2.1.

2.2.

2.3.

GEOMETRY

THE UNKNOWN FIELDS

LOADS

2.3.1.

2.3.2.

2.3.3.

Incident Fields

Initial Conditions

Applied Forces and Tractions

2.4. LINEAR EQUATIONS

2.4.1.

2.4.2.

Field Equations

Coupling Equations

2.5. VARIABILITY ON THE PARAMETERS

2.5.1.

2.5.2.

Stochastic Model of the Soil Parameters

Stochastic Model for the Applied Loads

2.6. SUMMARY OF MODELLING SECTION

2.6.1. Wellposedness and Approximation

3. Domain Decomposition

3.1. COUPLING FIELDS

3.2.

3.3.

3.4.

3.5.

LOCAL BOUNDARY VALUE PROBLEMS

VARIATIONAL FORMULATIONS

THE SFSI EQUATION

FEM AND REDUCTION TECHNIQUES

3.5.1.

3.5.2.

Component Mode Synthesis

Principal Directions

4. Boundary Integral Equations and BEM

4.1.

4.2.

4.3.

4.4.

4.5.

REGULARIZED BOUNDARY INTEGRAL

EQUATION IN A LAYERED HALF-SPACE

REGULARIZING TENSORS

BOUNDARY ELEMENTS

COUPLING WITH OTHER NUMERICAL

TECHNIQUES

FEM-BEM COUPLING INSIDE A VOLUME

5. Unbounded Interfaces

5.1.

5.2.

5.3.

5.4.

5.5.

GENERAL SPACE-WAVENUMBER

TRANSFORM

INVARIANT OPERATORS

DOMAIN DECOMPOSITION ON INVARIANT

DOMAINS

BEM ON INVARIANT DOMAINS

NON INVARIANT UNBOUNDED

INTERFACES

5.5.1.

5.5.2.

5.5.3.

Statistically Homogeneous Random

Medium

Weakly Perturbed Invariant Domains

Truncated Invariant Domain

6. Green’s Functions of a Layered Half-Space

6.1.

6.2.

6.3.

SOLUTION IN THE SLOWNESS SPACE

FAST INVERSE HANKEL TRANSFORM

SINGULARITIES

7. Applications

7.1.

7.2.

SOIL-FLUID-STRUCTURE INTERACTION

MODAL REDUCTION FOR SSI

7.2.1.

7.2.2.

Selecting Dynamic Interface Modes

Selecting Input Shapes for Static

Correction

7.3.

7.4.

SSI ON A RANDOM SOIL

SFSI FOR PERIODIC SHEET-PILES

vii

74

75

76

77

78

79

80

80

81

82

83

84

87

87

89

89

90

92

92

92

92

93

94

95

95

96

96

96

98

99

100

103

viii

7.5.

7.6.

TOPOGRAPHIC SITE EFFECTS USING SSI

FRAMEWORK

THE CITY-SITE EFFECT

7.6.1. Spectral Ratios

7.7. SSI IN BOREHOLE GEOPHYSICS

8.

9.

Conclusion

References

10.Appendix: Mathematical Results and Formulae

10.1. MATHEMATICAL PROPERTIES OF

VARIATIONAL BIE

10.1.1. Coupling on a Volume

10.2.

10.3.

10.4.

10.5.

PROPER NORM FOR RESIDUAL FORCES

MATRICES FOR THE REFLECTION￾TRANSMISSION SCHEME

HANKEL TRANSFORM

RECONSTRUCTION FORMULAE

3. THE SEMI-ANALYTICAL FUNDAMENTAL-SOLUTION￾LESS SCALED BOUNDARY FINITE-ELEMENT METHOD

TO MODEL UNBOUNDED SOIL

J P Wolf (Lausanne), C Song (Sydney)

1.

2.

3.

4.

Introduction

Objective of Dynamic Soil-Structure Interaction Analysis

SalientConcept

Scaled-Boundary-Transformation-Based Derivation

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

GOVERNING EQUATIONS OF

ELASTODYNAMICS

BOUNDARY DISCRETISATION WITH FINITE

ELEMENTS

DYNAMIC STIFFNESS MATRIX

HIGH-FREQUENCY ASYMPTOTIC EXPANSION

OF DYNAMIC STIFFNESS MATRIX

MATERIAL DAMPING

UNIT-IMPULSE RESPONSE MATRIX

5.

6.

7.

8.

Mechanically Based Derivation

Analytic Solution in Frequency Domain

Numerical Solution in Frequency and Time Domains

Extensions

8.1. INCOMPRESSIBLE ELASTICITY

107

107

109

112

112

114

122

122

123

124

124

125

125

127

129

130

134

134

135

136

137

139

140

141

144

148

149

149

8.2.

8.3.

8.4.

8.5.

ix

VARIATION OF MATERIAL PROPERTIES IN

RADIAL DIRECTION

REDUCED SET OF BASE FUNCTIONS

TWO-DIMENSIONAL LAYERED UNBOUNDED

SOIL

SUBSTRUCTURING

9. Numerical Examples

9.1.

9.2.

9.3.

9.4.

9.5.

PRISM FOUNDATION EMBEDDED

IN HALF-SPACE

SPHERICAL CAVITY IN FULL-SPACE WITH

SPHERICAL SYMMETRY

IN-PLANE MOTION OF SEMI-INFINITE WEDGE

IN-PLANE MOTION OF CIRCULAR CAVITY IN

FULL PLANE

10.

11.

12.

Bounded Medium

Concluding Remarks

References

4. BEM ANALYSIS OF SSI PROBLEMS IN RANDOM MEDIA

G D Manolis, C Z Karakostas (Thessaloniki)

1.

2.

Introduction

Review of the Literature

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.PROBABILISTIC RESPONSE SPECTRA

RANDOM LOADING

MONTE CARLO SIMULATIONS

RANDOM BOUNDARIES

SOIL MODELLING

FOUNDATIONS

SLOPE STABILITY

CONSOLIDATION

SOIL-STRUCTURE INTERACTION

EARTHQUAKE SOURCE MECHANISM

3. IntegralEquation Formulation

3.1.

3.2.

3.3.

THEORETICAL BACKGROUND

FORMAL SOLUTION

CLOSURE APPROXIMATION

4. Vibrations in Random Soil Media

149

150

151

152

153

153

156

159

161

163

165

168

172

175

179

180

180

181

181

182

183

184

184

185

187

187

187

188

190

191

OUT-OF-PLANE MOTION OF CIRCULAR CAVITY

IN FULL PLANE WITH HYSTERETIC DAMPING

x

4.1.

4.2.

4.3.

4.4.

PROBLEM STATEMENT

GROUND RANDOMNESS

ANALYTICAL SOLUTION

APPROXIMATE SOLUTION TECHNIQUE

4.4.1.

4.4.2.

4.4.3.

BEM Approach with Volume Integrals

BEM Approach without Volume Integrals

General Comments

4.5.

4.6.

STOCHASTIC FIELD SIMULATIONS

NUMERICAL EXAMPLE

5. BEM Formulation based on Perturbations

5.1.

5.2.

5.3.

5.4.

BACKGROUND

FORMULATION

FUNDAMENTAL SOLUTIONS

NUMERICAL EXAMPLES

5.4.1.

5.4.2

Circular Unlined Tunnel Enveloped by a

Pressure Wave

Circular Unlined Tunnel in a Half-Plane

under Surface Load

6. BEM Formulation Based on Polynomial Chaos

6.1.

6.2.

6.3.

6.4.

BACKGROUND

FORMULATION

RESPONSE STATISTICS

NUMERICAL EXAMPLE

7.

8.

Conclusions

References

5. SOIL-STRUCTURE INTERACTION IN PRACTICE

C C Spyrakos (Athens)

1. Introduction

1.1.

1.2.

BRIEF REVIEW OF LITERATURE ON

BUILDING STRUCTURES AND SSI

BRIEF REVIEW OF LITERATURE ON

BRIDGES AND SSI

2. Seismic Design of Building Structures Including SSI

2.1.

2.2.

2.3.

2.4.

BRIEF INTRODUCTION

DESIGN PROCEDURE

RESPONSE SPECTRUM ANALYSIS WITH SSI

NUMERICAL EXAMPLE: BUILDING

STRUCTURE

192

192

194

195

195

199

201

201

203

206

207

208

211

213

213

216

216

216

217

222

223

227

228

235

235

238

238

238

239

246

247

2.5. CONCLUSIONS

3. Seismic Analysis of Bridges Including SSI

3.1.

3.2.

BRIEF INTRODUCTION

MODELLING OF THE STRUCTURE AND

THE SOIL

3.2.1.

3.2.2.

3.2.3.

Modelling Backfill Soil Stiffness

Modelling Pile Stiffness

Modelling Abutment Stiffness for Linear

Iterative Analysis

3.3.

3.4.

3.5.

ITERATIVE ANALYSIS PROCEDURE

MODELLING ABUTMENT STIFFNESS FOR

NON-LINEAR ANALYSIS

BRIDGE EXAMPLE

3.5.1.

3.5.2.

Stiffness Computation

Parametric Studies

3.6. REMARKS AND CONCLUSIONS

4.

5.

References

Appendix

PART 2. RELATED TOPICS AND APPLICATIONS

6. BEM TECHNIQUES FOR NONLOCAL ELASTICITY

C Polizzotto (Palermo)

1.

2.

3.

4.

5.

Introduction

Nonlocal Elasticity

Thermodynamic Framework

Boundary-value Problem

Hu-Washizu Principle Extended to Nonlocal Elasticity

5.1.

5.2.

NONLOCAL HYPERELASTIC MATERIAL

LINEAR LOCAL ELASTICITY WITH

CORRECTION STRAIN

6.

7.

8.

9.

10. References

A Boundary/Domain Stationarity Principle

Symmetric Galerkin BEM Technique

Nonsymmetric Collocation BEM Technique

Conclusions

xi

249

251

251

251

251

253

255

257

260

261

264

268

269

270

272

275

277

279

281

284

284

285

287

290

293

294

295

xii

7. BEM FOR CRACK DYNAMICS

M H Aliabadi (London)

Abstract

1.

2.

3.

4.

5.

6.

Introduction

Time Domain Method (TDM)

Laplace Transform Method (LTM)

Dual Reciprocity Method (DRM)

Cauchy and Hadamard Principal-Value Integrals

Numerical Examples

6.1.

6.2.

A CENTRAL INCLINED CRACK

ELLIPTICAL CRACK

7.

8.

Conclusions

References

8. SYMMETRIC GALERKIN BOUNDARY ELEMENT

ANALYSIS IN THREE-DIMENSIONAL LINEAR-ELASTIC

FRACTURE MECHANICS

A Frangi (Milan), G Maier(Milan), G Novati(Trento),

R Springhetti (Trento)

Abstract

1.

2.

3.

Introduction

Formulation

Numerical Evaluation of Weakly Singular Integrals

3.1.

3.2.

3.3.

COINCIDENT ELEMENTS

COMMON EDGE

COMMON VERTEX

4. Numerical Examples

4.1.

4.2.

4.3.

4.4.

FRACTURES IN INFINITE DOMAINS

EDGE CRACKED BAR

CIRCULAR EDGE CRACK IN A PLATE

QUARTER ELLIPTIC CORNER CRACK

IN A PLATE

5.

6.

Concluding Remarks

References

Appendices

7.

8.

9.

Surface Rotors

Transformations and Equivalence of Domains

Equivalence of and

297

297

299

303

305

307

308

308

310

311

312

315

315

316

320

321

324

326

327

328

331

336

339

339

341

342

343

344

xiii

9. NUMERICAL SIMULATION OF SEISMIC WAVE

SCATTERING AND SITE AMPLIFICATION, WITH

APPLICATION TO THE MEXICO CITY VALLEY

L C Wrobel (London), E Reinoso (Mexico City),

H Power (Nottingham)

Abstract

1.

2.

3.

4.

5.

6.

7.

8.

9.

Introduction

Wave Propagation in a Half-Space

2.1. INCIDENT WAVES

BEM Formulation for SH Waves

BEM Formulation for P, SV and Rayleigh Waves

Observed Amplification in the Mexico City Valley

One-dimensional Response in the Mexico City Valley

Two-dimensional Modelling Using the BEM

Conclusions

References

345

345

347

349

351

355

359

364

365

369

373

INDEX 377

This page intentionally left blank

Tải ngay đi em, còn do dự, trời tối mất!