Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Biohydrogen Production: Fundamentals and Technology Advances
Nội dung xem thử
Mô tả chi tiết
© 2008 Taylor & Francis Group, LLC
Chemical Engineering
“…covers the biological hydrogen production authoritatively from A to Z … I
strongly recommend this excellent book to energy scientists, engineers, and students
who are interested in hydrogen production in general and biological hydrogen
production in particular, as well as to industrial concerns that are looking for
inexpensive hydrogen production technologies.”
—T. Nejat Veziroğlu, President, International Association for Hydrogen Energy
“... an excellent contemporary review of the biohydrogen production research field.”
—Nils-Kåre Birkeland, University of Bergen, Norway
Biohydrogen Production: Fundamentals and Technology Advances covers
the fundamentals of biohydrogen production technology, including microbiology,
biochemistry, feedstock requirements, and molecular biology of the biological
hydrogen production processes. It also gives insight into scale-up problems and
limitations. In addition, the book discusses mathematical modeling of the various
processes involved in biohydrogen production and the software required to model
the processes. The book summarizes research advances that have been made in
this field and discusses bottlenecks of the various processes, which presently limit
the commercialization of this technology.
The authors also focus on the process economy, policy, and environmental impact
of this technology, since the future of biohydrogen production depends not only on
research advances, but also on economic considerations (the cost of fossil fuels),
social espousal, and the development of H2
energy systems. The book describes the
fundamentals of this technology interwoven with more advanced research findings.
Further reading is suggested at the end of each chapter.
Since the beauty of any innovation is its applicability, socioeconomic impact, and
cost energy analysis, the book examines each of these points to give you a holistic
picture of this technology. Illustrative diagrams, flow charts, and comprehensive
tables detailing the scientific advancements provide an opportunity to understand
the process comprehensively and meticulously. Written in a lucid style, the book
supplies a complete knowledge bank about biohydrogen production processes.
ISBN: 978-1-4665-1799-8
9 781466 517998
90000
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK
an informa business
www.crcpress.com
Biohydrogen Production
Fundamentals and Technology Advances
Das
Dasgupta
Khanna
Biohydrogen Production
Debabrata Das
Namita Khanna
Chitralekha Nag Dasgupta
www.crcpress.com
K15140
K15140 mech FINAL.indd 1 1/21/14 10:13 AM
© 2008 Taylor & Francis Group, LLC
Biohydrogen Production
Fundamentals and Technology Advances
© 2008 Taylor & Francis Group, LLC
Biohydrogen Production
Fundamentals and Technology Advances
Debabrata Das
Namita Khanna
Chitralekha Nag Dasgupta
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20131021
International Standard Book Number-13: 978-1-4665-1800-1 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
© 2008 Taylor & Francis Group, LLC v
Contents
Foreword ................................................................................................................xv
Preface.................................................................................................................. xvii
Authors ................................................................................................................. xix
1. Introduction.....................................................................................................1
1.1 Introduction ...........................................................................................1
1.1.1 Global Environmental Issues .................................................1
1.2 Nonconventional Energy Resources ..................................................2
1.2.1 Solar Energy .............................................................................4
1.2.2 Wind Energy.............................................................................7
1.2.3 Hydropower..............................................................................8
1.2.4 Tidal Energy .............................................................................9
1.2.5 Geothermal Energy .................................................................9
1.2.6 Biomass Energy........................................................................9
1.2.7 Hydrogen Energy and Fuel Cell.......................................... 11
1.3 Conventional Hydrogen Technologies and Limitations ...............12
1.4 Biological Hydrogen Production Technology................................. 15
1.5 Properties of Hydrogen...................................................................... 19
1.5.1 Fuel Properties of Hydrogen................................................ 19
1.6 Book Overview....................................................................................20
References ....................................................................................................... 21
2. Microbiology .................................................................................................23
2.1 Introduction .........................................................................................23
2.2 Dark Fermentative Bacteria ...............................................................25
2.2.1 Adaptation to Temperature ..................................................25
2.2.1.1 Thermophiles..........................................................30
2.2.1.2 Mesophiles ..............................................................30
2.2.1.3 Psychrophiles.......................................................... 31
2.2.2 Tolerance to Oxygen.............................................................. 31
2.2.2.1 Obligate Anaerobes................................................ 31
2.2.2.2 Facultative Anaerobes ...........................................33
2.2.2.3 Aerobes ....................................................................35
2.2.3 Fermentative End Products ..................................................35
2.2.3.1 Lactic Acid Fermentation......................................36
2.2.3.2 Mixed Acid Fermentation .....................................36
2.2.3.3 Butyric Acid Fermentation....................................36
2.2.3.4 Butanol−Acetone Fermentation............................36
2.3 Photosynthetic Fermentative Bacteria .............................................36
2.3.1 Purple Bacteria ....................................................................... 37
vi Contents
© 2008 Taylor & Francis Group, LLC
2.3.1.1 Sulfur Bacteria ........................................................ 37
2.3.1.2 Nonsulfur Bacteria.................................................38
2.3.2 Green Bacteria ........................................................................39
2.3.2.1 Sulfur Bacteria ........................................................39
2.3.2.2 Gliding Bacteria......................................................39
2.4 Cyanobacteria ......................................................................................40
2.4.1 Anabaena ................................................................................ 41
2.4.2 Nostoc...................................................................................... 41
2.4.3 Synechocystis ......................................................................... 41
2.5 Green Algae .........................................................................................42
2.5.1 Chlamydomonas ....................................................................42
2.6 Concept of Consortia Development .................................................43
2.7 Synthetic Microorganisms—Are They the Future? .......................44
Glossary...........................................................................................................45
References .......................................................................................................45
3. Hydrogen Production Processes................................................................55
3.1 Introduction .........................................................................................55
3.2 Photobiological Hydrogen Production ............................................57
3.2.1 Basic Principles of Photobiological Hydrogen
Production...............................................................................57
3.2.1.1 Photoautotrophic Production of Hydrogen........57
3.2.1.2 Photoheterotrophic Production of Hydrogen......58
3.2.2 Fundamentals of Photosynthesis and Biophotolysis
of Water ...................................................................................58
3.2.3 Biophotolysis...........................................................................60
3.2.3.1 Direct Biophotolysis...............................................60
3.2.3.2 Indirect Biophotolysis............................................65
3.2.4 General Considerations and Advancements Made
in Biophotolysis ......................................................................68
3.2.4.1 Explosive Hydrogen–Oxygen Mixture ...............68
3.2.4.2 Oxygen Sensitivity of the Enzymes
Involved in Hydrogen Production.......................68
3.2.4.3 Inefficiency of Biophotolysis Process Due
to Large Antennae Size .........................................69
3.2.4.4 Quantum Efficiency............................................... 70
3.2.4.5 Availability of More Reductant............................ 70
3.2.4.6 Natural Coupling of Photosynthetic
Electron Transport to Proton Gradient ...............71
3.2.4.7 Photobioreactors.....................................................71
3.3 Photofermentation ..............................................................................72
3.3.1 General Considerations and Advancements Made
in Photofermentation.............................................................77
3.3.1.1 Immobilization Approaches.................................77
3.3.1.2 Scale-Up Considerations .......................................79
Contents vii
© 2008 Taylor & Francis Group, LLC
3.4 Dark Fermentation.............................................................................. 81
3.4.1 Anaerobic Fermentation ....................................................... 81
3.4.2 General Considerations to Commercialization
of the Technology...................................................................84
3.4.2.1 Low Yield and Rate of Production.......................85
3.4.2.2 Processing of Some Biomass Feed Stock
Is Too Costly............................................................85
3.4.2.3 Incomplete Substrate Degradation ......................85
3.4.2.4 Lack of Robust Industrial Strain..........................86
3.4.2.5 Engineering Issues .................................................86
3.4.2.6 Sensitivity of Hydrogenase to Oxygen ...............86
3.4.2.7 Mixed Consortia Have Methanogens:
Suppression of Methanogen Activity..................88
3.4.2.8 Low Gaseous Energy Recovery............................88
3.4.2.9 Biomass and End Metabolite Formation
Compete with Hydrogen Production..................89
3.4.2.10 Thermodynamic Limitations................................89
3.4.2.11 Integration of Processes.........................................89
3.4.3 Progress Made in the Field of Dark Fermentation............90
3.4.3.1 Overcoming Techno-Engineering Barriers ........90
3.4.3.2 Molecular Advancements .....................................90
3.4.3.3 Modeling and Optimization of the Process .......90
3.4.3.4 Pilot Scale Demonstration of the Technology...... 91
3.5 Hybrid Processes.................................................................................92
3.5.1 Integration of Dark Fermentative Process with
Photofermentation .................................................................92
3.5.1.1 Lactic Acid Fermentation Integrated
with Photofermentation ........................................93
3.5.1.2 Acetic Acid Fermentation Integrated with
Photofermentation..................................................94
3.5.1.3 Mixed Acid Fermentation .....................................94
3.5.2 Integration of Biophotolysis with Dark Fermentative
Process and Photofermentation...........................................95
3.5.3 Integration of Biophotolysis with Photofermentation......95
3.5.4 Biohydrogen Production Integrated with Anaerobic
Methane Production..............................................................96
3.6 Microbial Electrolysis Cell.................................................................97
3.7 Thermodynamic Limitations ............................................................98
Glossary......................................................................................................... 100
References ..................................................................................................... 100
4. Biohydrogen Feedstock ............................................................................. 111
4.1 Introduction ....................................................................................... 111
4.2 Simple Sugars as Feedstock............................................................. 111
4.3 Complex Substrates as Feedstock...................................................123
viii Contents
© 2008 Taylor & Francis Group, LLC
4.4 Biomass Feedstock............................................................................123
4.5 Organic Acids .................................................................................... 124
4.6 Waste as Feedstock ...........................................................................125
4.7 Assessment of Cost Components for Several Feedstocks
for Dark Hydrogen Fermentation...................................................125
4.8 Conclusion.......................................................................................... 126
Glossary......................................................................................................... 126
References ..................................................................................................... 126
5. Molecular Biology of Hydrogenases and Their Accessory Genes....... 133
5.1 Introduction ....................................................................................... 133
5.2 Occurrence of Hydrogenase in Nature.......................................... 134
5.3 Classification of Hydrogenases....................................................... 138
5.3.1 [Fe-only] Hydrogenases ...................................................... 138
5.3.2 [NiFe] Hydrogenase: Structure and Location.................. 140
5.3.2.1 Group 1: [NiFe] Uptake Hydrogenase............... 141
5.3.2.2 Group 2: Cyanobacterial Uptake
Hydrogenases and Hydrogen Sensors.............. 142
5.3.2.3 Group 3: Multimeric Soluble
Hydrogenases ....................................................... 142
5.3.2.4 Group 4: Escherichia coli Hydrogenase 3............ 143
5.3.2.5 Structural Organization of the GenesEncoding [NiFe] Hydrogenases and Their
Physiological Role in the Organism .................. 143
5.3.2.6 Biosynthesis of [NiFe] Hydrogenases................ 147
5.3.2.7 Transcriptional Regulation of [NiFe]
Hydrogenases ....................................................... 151
5.3.3 [FeFe]-Hydrogenase: Structure and Location.................. 154
5.3.3.1 [FeFe]-Hydrogenase Active Site ......................... 156
5.3.3.2 [FeFe]-Hydrogenase Maturation Machinery.... 157
5.4 Problems Associated with Oxygen Sensitivity of
Hydrogenases and Plausible Solutions.......................................... 160
5.4.1 Reasons for Oxygen Insensitivity of Hydrogenase ........ 162
5.4.1.1 Blocking of the Active Site by Partial
or Complete Reduction Product of
Attacking Oxygen ................................................ 162
5.4.1.2 Protective Role of FeS Clusters
Surrounding the Active Site ............................... 163
5.4.1.3 Role of Conformation of Gas Channels in
Delivering Oxygen Tolerance ............................. 163
5.4.2 Possible Solutions to Overcome Oxygen Insensitivity
of Hydrogenase .................................................................... 164
5.4.2.1 Change in the Amino Acid Residues of
the Gas Channels ................................................. 164
Contents ix
© 2008 Taylor & Francis Group, LLC
5.4.2.2 Overexpression of Oxygen-Tolerant
Hydrogenases ....................................................... 164
5.4.2.3 Nano-Technology to the Rescue: Creating
Anoxic Environments within the Organism
to Enhance Hydrogen Production ..................... 165
5.4.2.4 Gene Shuffling for Rapid Generation
of Hydrogen .......................................................... 165
5.5 Evolutionary Significance of Hydrogenase................................... 167
5.5.1 Role of Hydrogenase during Nitrogen Fixation.............. 167
5.5.2 Role of Hydrogenase during Methanogenesis ................ 168
5.5.3 Role of Hydrogenase in Bioremediation........................... 169
5.6 Conclusion.......................................................................................... 169
Glossary......................................................................................................... 169
References ..................................................................................................... 170
6. Improvement of Hydrogen Production through Molecular
Approaches and Metabolic Engineering ............................................... 179
6.1 Introduction ....................................................................................... 179
6.2 Molecular Approaches ..................................................................... 179
6.2.1 Improvement of Biomass Production ............................... 179
6.2.1.1 CO2-Concentrating Mechanisms (CCMs)......... 188
6.2.1.2 Cell Cycle............................................................... 189
6.2.2 Enhancing the Uptake of External Substrate................... 190
6.2.3 Improvement of Photoconversion Efficiency................... 190
6.2.4 Improvement of Hydrogen-Producing Enzymes............ 193
6.2.4.1 Improvement of Hydrogenase............................ 193
6.2.4.2 Improvement of Nitrogenase.............................. 194
6.2.4.3 Overexpression of Enzymes ............................... 196
6.2.5 Introduction of Foreign Hydrogenase .............................. 196
6.2.6 Deletion of Hydrogen Uptake Genes................................200
6.2.7 Other Approaches................................................................ 202
6.2.7.1 Generation of Anaerobic Condition .................. 202
6.2.7.2 ATP Synthase Modification for Enhanced
Hydrogen Production.......................................... 202
6.2.7.3 Linking of Hydrogenase to Cyanobacterial
Photosystems ........................................................203
6.2.7.4 Engineering of Heterocyst Frequency ..............204
6.3 Metabolic Engineering .....................................................................205
6.3.1 Proteomic Analysis..............................................................205
6.3.2 Redirecting the Electron Pull toward Hydrogen
Production.............................................................................206
6.4 Conclusion..........................................................................................209
Glossary......................................................................................................... 210
References ..................................................................................................... 211
x Contents
© 2008 Taylor & Francis Group, LLC
7. Process and Culture Parameters.............................................................. 219
7.1 Introduction ....................................................................................... 219
7.2 Factors Affecting Dark Fermentation Process .............................. 219
7.2.1 Effect of Inoculum on Fermentative Hydrogen
Production.............................................................................220
7.2.2 Temperature.......................................................................... 231
7.2.3 Effect of pH on Biohydrogen Production.........................234
7.2.4 Effect of Alkalinity on Biohydrogen Production ............ 237
7.2.5 Effect of Hydraulic Retention Time on Biohydrogen
Production.............................................................................238
7.2.6 Hydrogen and CO2 Partial Pressure ................................. 240
7.2.7 Effect of Metal Ion on Fermentative Hydrogen
Production............................................................................. 243
7.2.7.1 Effect of Iron and Nickel on Fermentative
Hydrogen Production.......................................... 243
7.2.7.2 Effect of Magnesium on Fermentative
Biohydrogen Production ..................................... 245
7.2.7.3 Effect of Other Heavy Metals on
Fermentative Biohydrogen Production............. 246
7.2.7.4 Effect of Nitrogen and Phosphate on
Fermentative Biohydrogen Production............. 247
7.3 Environmental Factors Affecting Hydrogen Production
in Photosynthetic Organisms.......................................................... 248
7.3.1 Effect of Light Intensity....................................................... 248
7.3.2 Effect of Temperature..........................................................250
7.3.3 Effect of Nitrogen.................................................................250
7.3.4 Effect of Sulfur .....................................................................250
7.4 Statistical Optimization of Factors Effecting Biohydrogen
Production.......................................................................................... 251
7.5 Comparison of Suspended Cell versus Immobilized Systems...... 252
7.6 Comparison of Batch Process versus Continuous Process .........254
7.7 Conclusion..........................................................................................254
Glossary.........................................................................................................256
References .....................................................................................................256
8. Photobioreactors ......................................................................................... 267
8.1 Introduction ....................................................................................... 267
8.2 Types of PBRs .................................................................................... 267
8.2.1 Closed System PBRs ............................................................268
8.2.1.1 Tubular Reactors...................................................268
8.2.1.2 Flat Panel PBRs .....................................................272
8.2.2 Other Reactors Geometries ................................................ 274
8.2.2.1 Torus-Shaped Reactor.......................................... 274
8.2.2.2 Annular Triple-Jacketed Reactor........................ 274
8.2.2.3 Induced–Diffused PBR........................................277
Contents xi
© 2008 Taylor & Francis Group, LLC
8.3 Physicochemical Parameters ........................................................... 278
8.3.1 Physical Parameters Affecting Performance
of a PBR.................................................................................. 278
8.3.2 Physicochemical Parameters Affecting the
Performance of a PBR.......................................................... 278
8.3.3 Other Factors Affecting Hydrogen Production and
Biomass Production.............................................................280
8.4 Design Criteria ..................................................................................280
8.4.1 Features of an Efficient PBR ...............................................280
8.4.2 Light-Related Design Considerations ...............................280
8.4.3 Temperature as a Design Criterion ................................... 281
8.4.4 Sterility (Species Control) and Cleanability..................... 282
8.4.5 Surface Area to Volume (A/V) Ratio ................................ 282
8.4.6 Oxygen Removal..................................................................283
8.4.7 Mixing ...................................................................................283
8.4.8 Material of Construction.....................................................284
8.5 Comparison of the Performance of the PBRs................................286
8.6 Energy Analysis ................................................................................ 287
8.7 Conclusion..........................................................................................288
Glossary.........................................................................................................288
References .....................................................................................................289
9. Mathematical Modeling and Simulation of the Biohydrogen
Production Processes ................................................................................. 295
9.1 Introduction ....................................................................................... 295
9.2 Development of Mathematical Models to Correlate
Substrate and Biomass Concentration with Time ........................ 296
9.2.1 Monod’s Model for Cell Growth Kinetics ........................ 296
9.2.2 Determination of Cell Mass Concentration and
Substrate Concentration...................................................... 297
9.2.3 Modeling and Simulation of the Fermentation
Process ................................................................................... 298
9.2.4 Regression Analysis of Simulated Values Obtained
from Monod’s Model and Experimentally
Obtained Values...................................................................299
9.2.4.1 Coefficient of Determination (R2
).......................299
9.2.5 Other Monod’s Type Models.............................................. 301
9.2.5.1 Monod-Type Model Including pH
Inhibition Term..................................................... 301
9.3 Substrate Inhibition Model..............................................................302
9.3.1 Modified Andrew’s Model .................................................302
9.3.1.1 Simulation of Cell Mass Concentration
and Substrate Concentration Profiles ................302
9.3.2 Simulation of the Biohydrogen Production Process
with Substrate Inhibition....................................................303
xii Contents
© 2008 Taylor & Francis Group, LLC
9.3.3 Regression Analysis of Simulated Values Obtained
from Substrate Inhibition Model and Experimentally
Obtained Values...................................................................304
9.4 Determination of Cell Growth Kinetic Parameters:
KS, μmax, Ki ...........................................................................................305
9.4.1 Kinetic Parameters and Their Estimation........................305
9.4.2 Calculation of Kinetic Parameters Using the Method
of Least Squares ...................................................................306
9.5 Cumulative Hydrogen Production by Modified Gompertz’s
Equation..............................................................................................307
9.5.1 Modified Gompertz’s Equation .........................................308
9.5.2 Modified Gompertz’s Equation for Modeling
Hydrogen, Butyrate, and Acetate Production..................308
9.5.3 Product Formation Kinetics by the Luedeking–Piret
Model..................................................................................... 310
9.6 Development of Mathematical Models for Cell Growth
Kinetics in Photofermentation Process.......................................... 312
9.6.1 Logistic Equation ................................................................. 312
9.6.2 Modified Logistic Model .................................................... 312
9.7 Modeling of Hydrogen Production by Photofermentation......... 313
9.7.1 Modified Gompertz’s Equation ......................................... 313
9.7.2 Overall Biohydrogen Production Rate and
Hydrogen Yield.................................................................... 313
9.7.3 Monod-Type Kinetic Model................................................ 314
9.7.4 Modification of Andrew’s Model....................................... 314
9.7.5 Generalized Monod-Type Model....................................... 314
9.8 Conclusion.......................................................................................... 315
Nomenclature............................................................................................... 315
References ..................................................................................................... 316
10. Scale-Up and Energy Analysis of Biohydrogen Production
Processes....................................................................................................... 319
10.1 Introduction ....................................................................................... 319
10.2 Determination of Scale-Up Parameters ......................................... 320
10.2.1 Geometric Similarity in Scale-Up...................................... 320
10.2.2 Scale-Up Based on Volumetric Power Consumption ..... 321
10.2.3 Volumetric Power Consumption in Agitated System.....322
10.2.4 Constant Impeller Tip Speed ............................................. 323
10.2.5 Reynolds Number................................................................ 324
10.2.6 Constant Mixing Time ........................................................ 324
10.2.7 Superficial Gas Velocity and Volumetric Gas Flow
per Unit of Liquid ................................................................ 325
10.3 Scale-Up Methods ............................................................................. 325
10.3.1 Significance of Scale-Up...................................................... 325
10.3.2 Laboratory Scale Study ....................................................... 326
Contents xiii
© 2008 Taylor & Francis Group, LLC
10.3.2.1 Batch Fermentation .............................................. 326
10.3.2.2 Continuous Fermentation ................................... 326
10.3.3 Scale-Up Study ..................................................................... 327
10.3.3.1 Experimental Setup for Continuous
Hydrogen Production.......................................... 327
10.4 Case Studies on Pilot-Scale Plants .................................................. 329
10.4.1 Case I: Pilot-Scale Plant Using Mixed Microflora
at Feng Chia University, Taiwan........................................ 329
10.4.1.1 Microbial Community......................................... 329
10.4.1.2 Operation Strategy and Hydrogen
Production in the Fermentor .............................. 329
10.4.2 Case II: Pilot-Scale Plant Using Distillery Effluent
to Produce Biohydrogen......................................................330
10.4.2.1 Microbial Community......................................... 331
10.4.3 Case III: Biohydrogen Production from Molasses
by Anaerobic Fermentation with a Pilot-Scale
Bioreactor System................................................................. 331
10.4.3.1 Microbial Community......................................... 332
10.4.4 Comparative Study among Different Pilot-Scale
Plants .....................................................................................333
10.5 Mass and Energy Analysis ..............................................................333
10.5.1 Material Balance of the Biohydrogen Production
Process ...................................................................................334
10.5.2 Energy Analysis of Biohydrogen Production
Process ...................................................................................334
10.5.3 Biological Route versus Chemical Route..........................335
10.5.4 Electrolysis of Water versus Biological Route for
Hydrogen Production..........................................................336
10.6 Cost Analysis of the Process............................................................336
10.6.1 Hydrogen as a Commercial Fuel .......................................336
10.6.2 Cost Calculation of Continuous Biohydrogen
Production Process Using Cane Molasses ....................... 337
10.6.2.1 Cost Analysis ........................................................ 337
10.7 Conclusion..........................................................................................339
Nomenclature...............................................................................................340
Glossary.........................................................................................................341
References .....................................................................................................341
11. Biohydrogen Production Process Economics, Policy,
and Environmental Impact.......................................................................343
11.1 Introduction .......................................................................................343
11.2 Process Economy...............................................................................343
11.2.1 Technical and Cost Challenges..........................................345
11.2.1.1 Production.............................................................346
11.2.1.2 Storage....................................................................346
xiv Contents
© 2008 Taylor & Francis Group, LLC
11.2.1.3 Distribution Cost..................................................348
11.2.1.4 Supply Cost and Demand...................................348
11.2.1.5 Conversion.............................................................349
11.2.2 Economics of a Hydrogen Infrastructure......................... 351
11.3 Environmental Impact .....................................................................356
11.4 Hydrogen Policy................................................................................358
11.5 Issues and Barriers............................................................................364
11.6 Status of Hydrogen in the Developed and the
Developing Countries.......................................................................364
11.6.1 United States.........................................................................365
11.6.2 Europe ...................................................................................366
11.6.3 Asia–Pacific........................................................................... 367
11.7 Future Outlook.................................................................................. 367
Glossary.........................................................................................................368
References .....................................................................................................368