Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Basic econometrics
Nội dung xem thử
Mô tả chi tiết
The McGraw-Hill Series
Economics
ESSENTIAl s OI ECONOMK s
Brue. McConnell. and Flynn
Essentials oi Economỉcs
Second Edirìon
Mandcl
Economics: The Basics
First Edition
Schiỉỉer
Essentials út Economics
Seventh Edition
PRINCIPLES OF ECONOMICS
Colander
Econumics, Mĩcroeconomics,
and Macroeconomics
Seventh Edition
Frank and Bernanke
Principles oi Economics.
Principles of Microeconomics.
Principles of Macroeconomics
Fourth Edition
Frank and Bernanke
Brieí Rditions: Principles «f
Economics, Principles of
Microeconomics, Prìnciples of
ỈVIacroeconomics
First Edition
McConnelI, Brue. and Flynn
Economỉcs, Microeconomìcs,
and Macroeconomics
Eighteenth Edition
McConnell, Brue, and Klynn
Brỉef Kditiuns: Eeonomics.
Mỉcroeconomics,
ỈYlacroeconomics
First Edition
Miller
Fĩrst anEighteenth Schille ThEỉeventh Samuelso Econoir Econamics Principle de Macroeconomic Econoi r mEdition nsToday o, Edition anomfMicroeconomics Microeconomic daEdition Today yNordhau , ands,Thse Máicr ,soro
Slavin
Economics, Microeconomics,
and Macroeconomics
Ninth Edition
ECONOM1CS OF SOCIAL ISSUES
Guell
Issues in Economics Todav
Fourth Edition
Sharp. Regìster, and Grìmes
Economics of Social Issues
Eighteenth Eđition
ECONOMETRICS
Gujarati and Porter
Basic Econometrìcs
Fifth Editìon
Giýarati and Porter
Essentìals oi Econometrĩcs
Fourth Edition
MANAGER1AL ECONOMICS
Baye
Managerial Econoniĩcs and Business
Strategy
Sixth Edìtion
Brickley, Smith, and Zimmerman
Managerial Econumics and
Organizatĩonal Architecture
Fìfth Edition
Thomas and Maurìce
Managerial Economics
Ninth Edition
1NTRRMEDIATE ECONOMICS
Bernheim and Whinston
Mĩcroeconomics
First Edition
Dornbusch. Fischer, and Startz
Macrncconomics
ADVANCED ECONOMICS Seventh Fran ỊVIicroeconomic Rome AdTenth Third \ ance k r Edition Edition d Edition Macroeconomíc s and Behavios r
MONEY AND BANKING
Cecchetti
Money, Banking, and Financìal
Markets
Second Edition
URBAN ECONOMICS
OSuIlivan
Urban Economics
Seventh Eđition
LABOR ECONOMICS
Borjas
Labor Economics
Fourth Edition
McConnell. Brue. and Macpherson
Contempurarỵ Labor Economics
Eighth Edition
PUBLIC FINANCE
Rosen and Gayer
Public Kinance
Eighth Edition
Seidman
Public Pinance
First Edition
ENVIRONMENTAL ECONOMICS
Field and Field
Emironmenta) Economics:
An Introduction
Fifth Ediíion
INTERNATIONAL ECONOMICS
Appleyard, Reld, and Cobb
[nternatìonal Economics
Sixth Edition
Kĩng and King
Internatỉonal Kconomics.
Globalization, and Policv:A Reader
Fifth Editìon
Puge Fourteenth Inu-rnationa l l Economic Edition s
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
Basi c
Econometric s
Fifth Edition
Damodar N. Cujarati
Pro/ipssor ỉùmeritus of Hmnamùs.
I niteii Stíttes Militarv icaderny, \\c.st Point
Dawn c. Porter
t niversity of -So (lí/lí'7-/1 i'.fiỉifnrnia
Asian Network
for Higher Education
No.
Me
Grauu
Boston Burr Ridge. IL Dubuque. IA Madison. Wl New York San Francisco St Louis
Bangkok Bogota Caracas Kuala Lumpur Lisbon London Maơrid Mexico City
Milan Montreal Nfìw Delhi Santiago Seoul Singapore Sydney Taipei Toronto Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
BASIC ECONOMbTRICS
[ntemational Edỉtion 2009
Exclusive righis hy McGrau-HiM Education (Asia), for manufacture and export. This book can nót be reexported from the couniry lo u hich í! is sold by McGraw-Hill. This International Edition is nót to be sold
or purehased in Ntirth America :ind con tai ns eonteni thát is differeni from iỉs North American version.
Publishcd by McGrau -Hill/Iru in. a business unit ót" The McGrav\ -Hin Companies. ì ne. 1221 Avenụe of the
Americas. Nêu- Ýork. NY 10020. Copyright © 2009. 2003. 1995. 1988. 1978 b> The McGraw-Hil1
Companies, Inc. AU rights reserved. No part of this publication may be reproduceđ or distributed in any
íbrm or by any means, orsiored in a daiabase or retrie\ ai system. without the prior written consent of The
McGrau -HiII Companĩes. Inc. including. bui nót lìmited lo. in an) network or other electronic storage or
transmìssion. or broađcasi for distance learning.
Some ancìHaries, including electronic and print components. ma) noi be avaĩlable to customers outside the
United States.
lo 09 08 07 06 05 04 03 02
20 09
CTF BJE
nhen ordering this title, liSI' ISBN: 978-007-127625-2 or Mím): 007-127625-4
Prỉntcd in Singapore
\\ \\ \\ .mhhe.com
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
t h e Author s
Damodar N. Gujarati
After teaching for more than 25 years át the City University of New York and 17 years in the
Department ofSocìal Sciences, u.s. Military Academy át West Point, New York, Dr. Gujarati
is currently Proĩessor Emeritus of economics átthe Academy. Dr. Giỹarati received his
M.Com. degree from the University of Bombay in 1960, his M.B.A. degree from the
University of Chicago in 1963, and his Ph.D. degree from the University of Chicago in 1965.
Dĩ. Gujarati has published extensively in recognized national and internationaljournals, such
as the Revievv ofEconomics and Statistics, the Economic Journaỉ, the Journaỉ ofFinancỉal
and Quantitatìve Anatysis. and the Joumal of Business. Dr. Giỳarati was a member of the
Board of Editors of the Joumal of Quantitaứve Economics, the otĩìcialjournal of the Indian
Econometric Society. Dr. Gujarati is also the author ofPensions and the New York City Fiscaỉ
Crisis (the American Enterprise Institute, 1978), Government and Business (McGraw-Hill,
1984), and Essentials of Econometrìcs (McGraw-Hill, 3d ed., 2006). Dr. Gujaratĩ's books
ôn econometrics have been translated into sevcral languages.
Dr. Guịarati was a Visiting Protessor át the University of Shcfficld, U.K.. (1970-1971), a
Visiting Fulbright Proícssor to India (1981-1982), a Visiting Professor in the School of
Management of the Natìonal University of Singapore {Ì 985-1986). and a Visiting Professor
of Econometrics, University of New South Wales, Australia (summer of 1988). Dr. Gujarati
has lectured extensively ôn micro- and macroeconomic topics in countries such as Australia,
China, Bangladesh. Germany, India, Israel. Mauritius, and the Republic of South Korea.
Dawn c. Porter
Dawn Porter has been an assỉstant professor in the lnformation and Opcrations Management Department át the Marshall School of Business of the University of Southern
Caliíornia since the tai Ì of 2006. She currently teaches both introductory undergraduate
and MBA statistics in the business school. Prior to joining the faculty át usc, tròm
2001-2006. Dawn was an assistant protessor át the McDonough School of Business át
Georgetovvn University, and beforc thai was a visitĩng professor in the psychology departmcnt át the Graduate School ofArts and Sciences át NYU. Át NYU she taught a number of
advanced statistical methods courses and was also an ĩnstructor át the Stern School of
Business. Her Ph.D. is (rom the Stẹrn School in Statistics.
Dawn's areas of research interest include categorical analysis, agreement measures,
multivariate modeling, and applications to the tìcld of psychology. Her current research examines online auction models from a statistieal perspective. She has presented her research
át the Joint Statistical Meetings, the Decision Sciences ỉnstitute meetings, the International
Ginni Conferenc aOutsid Sh(NYU Economic co-autho e hae)e Mae Medica so alsfse academìcs r an ô,o [ne n vvorke ndl lnformatio Essentìaìs NYUCenter . Toyd,. aDaw s an. Rs adn Un variou Systems statistica of has Corporation Business s bee s -eommerc ,ln severa consultan employe Sttttistics, , IBM l universitie edt an fo a. Cosmaire rsd man a statistic statistica 2nsy includin othe d,s lúc eđition semina rl mạịo consultan .g an th,dMcGraw-Hil er Ne seriescompanies Londo wt f Yor .n Daw r KPMG Schoo kl Universit , includin Irwin n ils, o alsInc ,f 2008 y og ..
Hi
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
For Joan Gujarati, Diane Gujarati-Chesnut,
Charles Chesnut, and my grandchildren,
"Tommy" and Laura Chesnut.
—DNG
For Judy, Lee, Brett, Bryan, Amy, and Autumn Porter.
Bin especially for mv adoring father, Terry.
—DCP
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
Brie f Content s
Preface xvỉ
Acknovvledgments xix
Introduction Ì
PART ONE
Single-Equation Regression Models 13
Ì The Nature of Regression Analysis
2 Two-Variable Regression Analysis:
Some Basic Iđeas
3 T\vo-Variab!e Regressíon Model: The
Problem of Estimation
4 Classical Normal Linear Regression
Model (CNLRM)
5 Two-Variable Regression: Interval
Estimation and Hypothesis Testing
6 L:\tensions of the Two-Variable
Linear Regression Model
7 Multiple Regression Analysis: The
Problem of Estimation
8 Multiple Regression Analysis: The
Problem of Inference
9 Dummy Variable Regression Models
PART TWO
Rclaxing the Assumptions
ót'the Classical Model 315
lo Multicollinearity: What Happens
li"the Regressors Are Correlatcd?
Ì Ì Heteroscedasticỉty: What Happens [f
thó Error Variance Is Nonconstant?
12 Autocorrelation: What Happens [f
tho Error Terms Are Correlated?
13 [ conometric Modeling: Model
Speciíìcation and Diagnostic Testing
PART THREE
Topics in Econometrics 523
14 Nonlinear Regression Models 525
15 Qualitative Response Regression
Models 541
16 Panel Data Regressíon Models 591
17 Dynamic Econometric Mođels:
Autoregressive and
Distributed-Lag Models 617
PART FOUR
Simultaneous-Equation Models and Time
Serĩes Econometrics 671
18 Simultaneous-Equation Models 673
19 The Identiíication Problem 689
20 Simultaneous-Equation Methods 711
21 Time Series Econometrics: Some
Basic Concepts 737
22 Time Series Econometrics:
Forecasting 773
APPENDICES
A A Review of Some
Statistical Concepts SOI
B Rudiments of Matrix Algebra 838
c
D
E
The Matrix Approach to
Linear Regression Model
Statistical Tables
Computer Output of EVievvs,
MINITAB. Excel. and STATA
Economic Data ôn the
World Wide Web
SELECTED BIBLIOGRAPHY 902
849
877
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
Content s
Preface xvi
Ackncmledgments xìx
Introduction Ì
1.1 \v hát Is Econometrics? Ì
1.2 Why a Separate Discipline? 2
1.3 Mcthodology of Econometrics 2
/. Statement ofTheory ót Hvpothesìs 3
2. Specification of the Mathematical Motiel
of Consumptỉon 3
.í. Specựication of the Econometrìc Model
of Consumption 4
4. Obtaining Da ta 5
5. Estimation of the Econometric Model 5
ứ. Hypothesis Testing 7
Forecasting or pređictìon 8
<S' Use oi'the Modeifor Controi
OI- Poiicy Purposes 9
(_ hoosing among Competing Models 9
1.4 Tvpcs ofEconometrics lo
1.5 Mathematĩcal and Statistical Prerequisites Ì Ì
1.6 The Role ofthe Computer Ì Ì
1.7 Suìiuestionsfor Further Readine 12
PART ONE
SINGLE-EQUATION REGRESSION
MODELS 13
CHAPTER ì
The Naturc ofRegression Analvsis 15
1-1 Hisiorĩcal Origin of the Term Regression 15
1.2 The Modern Interpretation of Regression 15
/\,I'IÌ/>ỈIS M
1.3 Suuisiical versus Dctcrministic
Relationships 19
1.4 kcLMVssitMi versus Causation Ì1
)
Ì .5 Rcmcssion versus Correlation 20 Ì1. .76 ] lerminolog \n;il hếỉli. e> • N.HLir p-s si, ì. ,ft Smm s 2 . ni} ót Iiac\ yc2 ạnathua c.\ <hd Notatio Source ni ni I22 Hít ì ! him sn út o 2f 25 Dati I i tbr Economic
Summary and Conclusions 28
Exercises 29
CHAPTER 2
Two-Variable Regression Analysis: Some
Basĩc Ideas 34
2.1 A Hypothetical Example 34
2.2 The Concept of Population Regression
Punction (PRF) 37
2.3 The Meaning ofthe Term Linear 38
Linearity in the Variabìes 38
Linearity in the Parameters 38
2.4 Stochastic Speciíìcation of PRF 39
2.5 The Signiíĩcance of the Stochastic
Disturbance Tcrm 41
2.6 The Sample Regression Punction (SRF) 42
2.7 Illustrative Examples 45
Summary andConclusions 48
Exercises 48
CHAPTER 3
Tvvo-Variable Regression ModehThe
Problem of Estimation 55
3.1 The Method of Ordinary Least Squares 55
3.2 The Classical LinearRegression Modcl: The
Assumptions Underlying the Method
of Least Squares 61
A Worci about TheseAssumptions 68
3.3 Precision or Standard Errors
ofLeast-Squares Estimates 69
3.4 Properties of Least-Squares Estimators:
The c ìuuss—Míirkov Thcorcm 7 Ì
3.5 The Coeữìcieiit of Determination r
2
:
A Measure of "Goodness ót" hít" 73
3.6 A Numerical Example 78
3-7 lllustrative Examples 81
3.ỈA8. ÌA Dcmaiio Summar Exercise trót'ị ÌViiriance \ppendi incarit i INot cast-Square east-Squarữ esx ôyss aiu n 83an n oi Mont \5 ld" Unbiasedncs Lcast-Square 9Conclusion Slandar ss Estimạtor e2 Kstimator Cạrldo Error Experimẹnt sss 8s Prop s 9 bsti 9s 4 2 3 n cs 93
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
Contenls vii
3A.4 Covariance Between fi\ and £2 93
3A.5 The Least-Squares Estimator of ơ2
93
3A.6 Minịmuim-Variance Property
of Least-Squares Estimators 95
3A.7 Consistency of Least-Squares Estimators 96
CHAPTER 4
Classical Normal Linear Regression
Model (CNLRM) 97
4.1 The Probability Distribution
of Disturbances Ui 97
4.2 The Normality Assụmption for li, 98
Whx the NormaỊitỵ Assumption? 99
4.3 Properties of OLS Estimators under
the Normality Assưmption I 00
4.4 The Method of Maximum
Likelihood (ML) 102
Summary and Conclusions 102
Appendix 4A 103
4A.1 Maximum Likelihood Estimation
of T\vo-Variable Regressìon Model 103
4A.2 Maximum Likelihood Estimatĩon
of Foocỉ Expenditure in India 105
Appendix 4A Exercises 105
CHAPTER 5
T>\o-Variable Regression: Interval
Estimation and Hypothesis Testing 107
5. ì Statistical Prerequisites 107
5.2 Intcrval Estimation: Some Basic Ideas 108
5.3 Contìdence Intervals for Regression
CoeAìcients fi\ and ti: 109
í ontitỉciH V ỉntcrval loi- /í; / nụ
Ctnựitlence hìicrval ft>r p\ li tui $2
Sitnuỉtaitetĩítxtv ì ỉ i
5.4 Coníìdence [ntcrval for à
2
I l I
5.5 Hypothcsis Testiim: Gcncral Comments Ì 13
5.6 Ì lypothesis Testing:
The ConHdence-lnterval Approach Ì 13
5.7 Hypothcsi TheOnc-SUlcd T\vo-Siiictl í7Ị'v//w TCIÌHỊ: Tcst-c*t-Sỉmiỉíìcanc ttctinỵ tin- SÌí>Mfictmcc oi Regmsskm s icnỉs Testing the Siiỉiiiticuncc orOI- The : Onc-Taĩ/ Twti-Tưil Tesi e I Approac Ti"./ / oi Tcsĩ ỉ? h Ìrĩ ỈU Ì Hỉ 5 1
; The ý
1
5.8 I ụ pothesis Tcstina: Somc PracTÌcnl Aspccts I Ìĩc\t ỉ M" 1
tỉyfU)thi.-\h Tiu- \U\imn\i // lơy ". ít t i'/»////.« " í»)• "Rvivt-' /ìttỉi " ti
7V?f "ZỂTO " Mí// Hvpothesis anci the "2-1" Ruỉe
o/Thumb 120
Forming the Nuil and Aỉternative
Hvpotheses 121
Choosing a. the Leveì of Signiýicance ì 21
The Exaci Leveì of Signiýicance:
The p Vaỉue 122
Statisticaỉ Signiýìcance versus Practicaỉ
SìỊỊtíiýicance 123
The Choice between Confidence-Ịntervaỉ
an tỉ Test-of-Signifieance Approuches
to Hvpathesis Testing ỉ 24
5.9 Regression Analysis and Analysis
of Variance 124
5.10 Application of Regression Analysis:
The Problem of Prediction 126
Mean Pretiiction ì27
hĩdìviduaì Preiỉictitm 138
5.1 Ì Reporting the Results of Regression
Analysis 129
5.12 Evaluating the Rcsults of Regression
Analysis 130
Nartttality Tcsls /30
Other Tcsts oỊModel AíiecỊiiacy 132
Summary and Conclusions 134
Excrcises 135
Appendix 5A 143
5A.1 Probability Distributions Rclated
to the Normal Distribution 143
SA.2 Derivation of Equation (5.3.2) 145
5A.3 Derivaúon of Equation (5.9.1 I 145
5A.4 Derivations ót* Equations (5.10.2)
mui (5.10.6) 145
iiiriưtỉic I>f Meo lì Pivilictitm 145
liiriam c ót ImÌÌYĨtỉitíti PtVíih Hon Ì4(\
CHAPTER 6
Extensions of the Two-Variable Linear
6.1 Reuression ihrouuh the Oriiỉìn 147 Regressio/--n f Model 147 6. 6.324 Kunetiona Scalin Rcnrcssio I Mímut>ran/l Rc\>rcssiu>i-thn>UỊỉh-(hizhỉ dnhon/ KormôUnit n Standarđirc ss ỉnHTprcttition lít'Réiircssio of Mcasuremen d Varíable n ModiMt s15 15 /ĩ4s Ì "75 UtHỈcl ỊĨ0 l
6.56 ị\o\x Scmìlo Nlodc \lodcl ts 15 ưo 1* Modcls Mcasur 9 0 :e Lo hlasticitv a Liu an: Thd Ìe i Loii-L.inca n Log r >
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
viii Contents
Haw tu Mcasure the Grxnvth Raiư:
The Log—Lin híodel 162
The Lin—Log Modeỉ ỉ64
6.7 Reciprocal Models 166
Log Hvperbolư or Logarithmic Reciprocaỉ
Modeỉ ỉ 72
6.8 Choice of Functìonal Form 172
6.9 A Note ôn the Nature of the Stochastic Error
Tcrm: Additivc versus Multiplicative
Stochastic ErrorTerm 174
Summary and Conclusions 175
Exercises 176
Appendix 6A 182
6A.1 Derivation of Least-Squares Estimators
for Regression through the Origin 182
6A.2 Proof thát a Standardizcd Variable
Has Zero Mean and Unit Variance 183
6A.3 Logarithms 184
6A.4 Growth Rate Formulas 186
6A.5 Box-Cox Regression Model 187
CHAPTER 7
Multỉple Regression Analysis:
The Problem of Estĩmation 188
7.1 TheThree-Variable Modcl: Notation
and Assumptions 188
7.2 [nterpretation of Multiple R.egression
Equation 191
7.3 The Meaning of Partial Regression
CoeíTìcients 191
7.4 OLS and ML Estimation ofthe Partial
Regression Coeíììcients 192
OLS Estimaỉors ỉ 92
Variances í!Hi! Standơrd Errors
o/OLS Estimators ỉ 94
Properties ofOLS Estimators 195
Maximum Likelihood Estimators Ỉ96
7.5 The Multiple Cocữìcient of Determination R2
7.7 7.86 R A Simpl opeciíìcatio oanfnd Multipl Corrclatio Regression ỉmpaci Change Illustrativ the Regressio Multípl en Regression ônn in Bia e R Exampl e the Dependent More Cocíììcien s 19 ônn 20 in Standardized Variables 6 0 the: than lntroductio 19 e Contex t 8 Onel Variable Regressor n to ofa Ị Unitỉ 99 99 2
anComparing d the AdịusteTHd RĨO 20R1
2 Values 203
AUocating R
:
among Regressors 206
The Game "ạf Maximizing R2
206
7.9 The Cobb-Douglas Production Function:
More ôn Functional Form 207
7.10 Polynomiai Regression Models 210
7.11 Partial Correlation Coeíĩìcients 213
Explanation o/Simpỉe and Partiáĩ
Correiation Coẹfficients 2Ỉ3
Iníerpretation ofSimple and Partiaỉ
Correiaũon Coefficients 214
Summary and Conclusions 21 5
Exercises 216
Appendix 7A 227
7A.1 Derivation of OLS Estimators
Given in Equations (7.4.3) to (7.4.5) 227
7A.2 Equality bctvveen the Coeíĩìcients of PGNP
in Equations (7.3.5) and (7.6.2) 229
7A.3 Derivation of Equation (7.4.19) 229
7A.4 Maximum Likclihood Estimation
ofthe Multiplc Regression Model 230
7A.5 EViews Output of the Cobb-Douglas
Production Function in
Equation (7.9.4) 231
CHAPTER 8
Multiple Regression Analysis: The Problem
of Inĩerence 233
8.1 The Normality Assumptỉon Once Atỉain 233
8.2 Hypothesis Testing in Multiple Recression:
General Comments 234
8.3 Hypothesis Testing about Individual
Regression Coeíỉìcients 235
8.4 Testing the Overall Sìunitìcance of the Sample
Regression 237
The Anaỉysis of Varỉance Approach to Testing the
Overall Significance nỉ an Observed Muỉtìpỉe
Regression: The F Test 238
Testing the Overali Signiýìcance ofa Muỉtìpie
AnRegression: important The Rlationship behveen F Tesi 240 R2 Regression Testing the Overall in Terms Signựỉcance o/R of a Muỉtìpỉe and F 241 2
8.56 TestinRestricte Coeflficient Equalit oiThe angy th "ỉncremental" t-Test d Restriction Expỉanatory e Leas s Equalit 24t Approach Squares 6 ys ofTw 24: Variable 8 or Testin o 249 Regressio "Margìnaỉ g 242 Linea 243 n r " í 'ontribution
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
8.7 Testíng for Structural or Parameter Stability
of Regression Models: TheChow Test 254
8.8 Prediction with Multiple Regression 259
8.9 The Troika of Hypothesis Tests: The
Likelihood Ratio (LR), Wald (W), and
Lagrange Multiplier (LM) Tests 259
8.10 Testing the Functional Form ofRegression:
Choosing betvveen Linear and Log-Linear
Regression Models 260
Summary and Conclusions 262
Exercises 262
Appendix SA: Likelihood
Ratio (LR)Test 274
CHAPTER 9
Dummv Variable Regressĩon Models 277
9.1 The Nature of Dummy Variables 277
9.2 ANOVA Models 278
Caution in the Use of Dummv Variables 28!
9.3 ANOVA Models with Two Ọualitative
Variables 283
9.4 Regression with a Mixture of Quantitative
and Ọualitative Regressors: The ANCOVA
Modèls 283
9.5 The Dummy Variablc Altcrnative
to the Chow Test 285
9.6 Interaction Eíĩects Using Dummy
Variables 288
9.7 The Use of Dummy Variables in Scasonal
Analysis 290
9.8 Piecewise Lĩnear Regression 295
9.9 Panel Data Regression Models 297
9.10 Somc Technical Aspects oithe Dummy
Variable Technique 297
The Interpreíation oi Dumtny Varìables
in Semiỉogarithmic Regressions 297
9.121 Topic AAppendi wit Summar Exercise hĩsConcludin Dummy What Dumm sa foDummy yxs Happens 30 r9AanyFurthe Variabìes Variables and dg Regresso 5 : Conclusion Semilogarithmi Exampỉ rVariable? Stud ựer the y 31 30 mui s 30 30 Dependenl Variabỉe 4 0 0 Heteroscedasticity Autocorreỉaùon c4 Regressio 299 n 299 298
Con ten ts ìx
PART TWO
RELAXING THE ASSUMPTIONS OF THE
CLASSICAL MODEL 315
CHAPTER 10
Multicollinearity: What Happens
If the Regressors Are Correlated? 320
10.1 The Nature of Multicollinearity 321
10.2 Estimation in the Presence of Perfect
Multicollinearity 324
10.3 Estimation in the Presence of "High"
bút "Imperfect" Multicollinearity 325
10.4 Multicollinearity: Much Ado about Nothing?
Theoretical Consequences
of Multicollinearity 326
10.5 Practical Consequences
of Multicollinearity 327
Large Variances anđ Covariances
ofOLS Estimators 328
Wìder Cọnfidence Intervals 330
"ỉnsignificant" t Ratios 330
A Hig/i R2
bút Few Signiýìcant í Ratios 331
Sensitivity a('OLS Estimators and Their
Startdard Errors to Smaỉỉ Changes in Data 331
Consequences of Micronumerosity 332
10.6 An lllustrative Example 332
10.7 Detection of Multicollinearity 337
10.8 Remcdial Measures 342
Do Nothing 342
RuIe-of-Thumb Procedures 342
10.9 ỉs Multicollinearity Necessarily BadV Maybe
Noi. If the Objective Is Prediction Only 347
10.10 An Extended Examplc: The Lonuley
Data 347
Summary and Conclusĩons 350
Exercises 351
CHAPTER 11
Heteroscedasticity: \Vhat Happens If
th11.1 The Naturc of Heteroscedasticity 365 11.e324ErrooConsequence ThOLSquare f eHeteroscedasticit Heteroscedasticit rDifference SMeiho Varianc Estimatio s (GLS d osefn)oGeneralize Ifbenvcen isn37Usin Nonconstant thy1e g37Presenc OL04dOLS SLcas ein thand ?e Presenc 36GLS 5 e3 73
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
X Contents
OLS Estimation AlỉowingJòr
Heteroscedasticity 3 74
OLS Estimation Disregarding
Heteroscedastỉcity 3 74
Á Technicaì Note 376
11.5 Detectìon of Heteroscedasticity 376
lnformat Methods 3 76
Formaỉ Methods 3 78
11.6 Remedial Measures 389
When ơiĩs Known: The Method ofWeìghted
Least Squares 3X9
When ơi Is Noi Known 391
11.7 Concluding Examples 395
11.8 A Caution about Overreacting
to Heteroscedasticity 400
Summary and Conclusions 400
Exercises 401
Appendix Ì ÌA 409
11A.1 Proofof Equation (Ì 1.2.2) 409
11 A.2 The Method of Weighted Least
Squares 409
ì TA.3 Proof thát E(â2
) +Õ1
in the Presence
of Heteroscedasticity 410
11 A.4 White's Robust Standard Errors 41 Ì
CHAPTER12
Autocorrelation: What Happens If the Error
Terms Are Correlated? 412
12. Ì The Nature of the Problem 413
12.2 OLS Estimatỉon ỉn the Presence
of Autocorrelation 418
12.3 The BLUH Estỉmator in the Presence
of Autocorrelation 422
12.4 Consequences of Usỉng OLS
in the Prcsencc of Autocorrelation 423
OLS Estímatìon Aỉlowing
for Autocorrelation 423
OLS Estimation Disregarding
12.65 Detectin Relationshi i1960-200 n thAutocorrelation in. nIV. li./e in. Graphical Busỉnes Durbin-Watson The The A GenemlTest So g5 Autocorrelatio p Breusch-Godfrey (BO 42 RunsTesí Mâm- Tests betwee s8 Secto Method nr Wage 423 o 43 nf oỷAutocorrelation: th42 dTest of es 429ì Unite an Autocorrelation? 9 d 434 Productivit d States Hem, v 438 440
12.7 What to Do when You Find Autocorrelation:
Remedial Measures 440
12.8 Model Mis-Specification versus Pure
Autocorrelation 441
12.9 Correcting for (Pure) Autocorrelation:
The Method of Generalized Least
Squares (GLS) 442
wken p ỉs Known 442
When p ỉs Nót Known 443
12.10 The Newey-West Method of Correcting
the OLS Standard Errors 447
Ì 2.11 OLS versus FGLS and HÁC 448
12.12 Ađditional Aspects ofAutocorrelation 449
Dummy Varỉabtes andAutocomlatừm 449
ARCHand GARCH Modeh 449
Coexìstence of Autocorreỉation
arnì Heteroscedasticity 450
12.13 A Concluding Example 450
Summary and Conclusỉons 452
Exerciscs 453
Appendix 12A 466
ì 2A. ì Proof thát the Error Term Vi in
Equation (12.1.1 Ì) ls Autocorrelated 466
12A.2 Proof of Equations (12.2.3), (12.2.4),
anđ (12.2.5) 466
CHAPTER13
Econometric Modeling: IVlodel Spcciíìcation
and Diagnostic Testing 467
13.1 Model Selection Criteria 468
13.2 Types of Speciíìcation Errors 468
13.3 Consequences of Model Specỉíìcatioii
Errors 470
Underfitting a Modeỉ (Omừtìng a Rclevant
Variable) 471
ỉnclusìon lít an Irrelevant Variabỉe
(Overfittiiĩg a Model) 473
13.4 Tests of Specitìcation Errors 474
13. 13.56 Error Erro Incrrec Functional Detecting (Overfittinga Errors Tests VaríableY Variablẽ rsTer otfm for Omitted Variables and Measuremen Speciíìcatio of4S Measurement Measurement Xthe 482 6 Form 4X3 Model) Presence nto 48 477 fthe2 475 Stochasti in(tỉ the Unnecessary c Dependent Expkmaỉory Incorrecí tiiriahlcs
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
Contents xi
13.7 Nested versus Non-Nested Models 487
ì 3.8 Tests ofNon-Nested Hypotheses 488
The Discrímination Approach 488
The DiscerningApproach 488
13.9 Model Selection Criteria 493
The R
2 Criterion 493
Adjusted R
1
493
Akaikes ĩnýòrmation Criterion (AJC) 494
Sckwarz's In/ormation Criterion (SIC) 494
Maỉhnvs s Cp Criterion 494
Á ÌVord ofCàutlon ahout Model
Selection Criteria 495
fòrecast Chi-SíỊuarc (x1
) 496
13.10 Adđitional Topĩcs in Econometric
Modeline 496
Outỉiers, Leverage, anđ ỉnftuence 496
Recursive Least Squares 49H
Chow's Prediction Paiỉure Test 498
Missing Data 499
13.11 Concludintĩ Examples 500
/. A Modeỉ oý Houriy Wage Determination 500
2. Reo! Consumption Function for the United
States. Ì947-2000 505
13.12 Non-Normal Errors and Stochastic
Regressors 509
/. What Happens í/the Error Term is Noi
Normally Distributed? 509
2. Stochastic Explanatory Varíabỉes 510
13.13 A Word to the Practitioner 5 Ì I
Summarv and Conclusions 5 12
Exeicises 513
Appendix 13A 519
13A.1 The Proof thát E{bi2) = 02 + foi>ĩ2
[Equation ( 13.3.3)] 519
ì SA.2 The Consequences of Including an Irrelevant
Varíable: The Unbíasedness Property 520
13A.3 The ProofofEquation (13.5.10) 521
PART THREE CHAPTER 14 14.1 Intrinsically Linearand Intrinsically TOPIC Nonlinea 14.3A. 24 Nonlinea Regressio Estimatio ThSerIProofo NRegressio ECONOMETRIC rnRegressìo Model offEquatio LineasModel rn52nanModel 7(13.6.2 d Nonlinea ssS)5252525525r 3
14.3 Estimating Noniinear Regression Models:
The Trial-and-Error Method 527
14.4 Approaches to Estimating Nonlinear
Regression Mođels 529
DirecỀ Search Oi- Trial-and-Error
or Derivative-Free Method 529
Dĩrcci Opiimizaĩion 529
iterative Linearization Method 530
14.5 Illustrative Examples 530
Summary and Conclusions 535
Exercises 535
Appendix 14A 537
14A. ì Derivation of Equations (14.2.4)
and (14.2.5) 537
14A.2 The Linearization Method 537
14A.3 Lĩnear Approximation ofthe Exponential
Function Givcn in Equation (14.2.2) 538
CHAPTER 15
Qualitative Response Regression IModels 541
15.1 The Naturc of Qualitative Rcsponse
Models 541
15.2 The Linear Probability Model (LPM) 543
Non-Normality oJ the Disturbances Ui 544
Heteroscedastic ỉ ariances
o/ the Disturbances 544
Non/ủựUỉment ọ/ 0 < E( y, I X.) 5 l 545
Questionable Value of R as a Measure
of Goodness ofFit 546
15.3 Applicaùons of LPM 549
15.4 Alternatives to LPM 552
15.5 The Logit Model 553
15.6 Estimation of the Logit Modcl 555
Daia át the ĩndividuaỉ Level 556
Grouped or Repỉicated Dư ta 556
15.7 The Grouped Logit (Glogit) Model: A
Numerical Example 558
Inierpretation oJ the Estimated Logil
15.98 Thor [ndividua eModeỉ Probit Dam: orinRegression The ProbiLogi the Vaỉue individuaỉ Datã Probit Modelfor Marginal t Mode gprobit t 558Estimation Mode l Datla Modeỉs fol of 56 567 r Ẹffecl tựa Ungroupe a6 1 Regressor with 570 571 Ungrouped Grouped d Ưnit in the Various Change
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
xỉ! Cnrttents
15.10 Logìt and Probĩt Models 571
15.11 The Tobit Model 574
lUustration ofthe Tobit Madeỉ: Ray Fair's Mndeỉ
of Extramarítaí AỌairs 575
15.12 Modeling Count Data: The Poisson
Regression Model 576
15.13 Further Topìcs in Qualitative Response
Regression Models 579
Ordinal Logit anđ Probu Mờdels 580
Muỉtinomiaỉ Logit and Probĩt Models 5M)
Dumtion Modets 580
Summary and Conclusions 581
Exercises 582
Appendix I5A 589
ì 5A. Ì Maximum Likelihood Estimation ofthe Logit
and Probit Models for Individual (Ungrouped)
Data 589
CHAPTER 16
Panel Data Regression Models 591
16.1 Why Panel Data? 592
16.2 Panel Data: An Illustrative Example 593
16.3 Pooled OLS Regression or Constant
Coefficients Model 594
16.4 The Fĩxed Effect Least-Squares Dummy
Variable (LSDV) Model 596
A Caution in the ưse oi the Fixed Effect
LSDV Modeỉ 598
16.5 The Fixed-Effect Within-Group <WG)
Estimator 599
16.6 The Random Eữects Modcl (REM) 602
Breusch and Pagan Lagrange
Muitipiier Test 605
16.7 Properties of Various Esiimators 605
16.8 Fixcd EITects versus Random Eữects Model:
Some Guidelines 606
16.9 Pancl Data Regressions: Some Concluding
Comments 607
CHAPTER 17 an17.1 The Rolc of "Time," or "Lag." Dvnamĩ 17. 16.1d20Distributed-La SomThiumar Exercise nceEconomic Econometri Reason e niustrativ ys 61anssd3 fo Conclusion g61reModel c Example 8LagModels s 62ss2s 6161: 60Autoregressiv 72 7 e
17.3 Estimation of Distributed-Lag Models 623
Ad Hoe Estimation ofDistributed-Lag
Modeỉs 623
Ì 7.4 The Koyck Approach to Distributed-Lag
Models 624
The Median Lag 627
The Mean Lag 627
ì 7.5 Rationalization of the Koyck Model: The
Adaptive Expectations Model 629
17.6 Another Rationalization of the Koyck Model:
The Stock Adjustment, or Partial Adjustment.
Model 632
ì 7.7 Combination of Adaptive Expectations
and Partial Adjustment Models 634
Ì 7.8 Estimation of Autoreeressive Models 634
17.9 The Method of Instrumental
Variables (IV) 636
ì 7.10 Detecting Autocorrelatĩon in Autoreeressive
Modeis: Durbin /ỉ Test 637
17.11 A Numerical Example: The Demand for
Money in Canada, 1979-1 to 1988-IV 639
17.12 [llustratìve Examples 642
17.13 The Almon Approach to Distributcd-Lag
Models: The AI mon or Polvnomial Distributed
Lag(PDL) 645
ì 7.14 Causality in Economics: The Granser
Causality Test 652
The Cranger Test 653
A Note ôn Causaíity mui Exogeneity 657
Summary and C onclusions 658
Exercises 659
Appendix 17A 669
ì 7A.1 The Sargan Test tbr the Validity
of lnstruments 669
PART FOUR
SIMULTANEOUS-EQUATION
MODELS ANDTIME SẼR1ES
CHAPTER 18 18.1 The Nature of Simultaneous-Equation ECONOMETRIC Simultaneous-Equatio 18.23 Examplc ThModeli Inconsistenc e Simultaneous-Equatio s s67o43fySimultaneous-Equaúo SofOL67nS1Model Estimatoi n Bias s -676n3"
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn
Contents xiii
18.4 The Simultaneous-Equation Bias: A Numerical
Example 682
Summary and Conclusions 684
Exercises 684
CHAPTER 19
The Identiíication Problem 689
19.1 Notations and Deíìnitions 689
19.2 The Identiíìcation Problem 692
ưnderidentiýìcatìon 692
Just, or Exact, ỉdentỉficatìon 694
Overiđentìficatìon 697
19.3 Rules íbr Identitìcation 699
The Order Condition of ỉdentìfiabilìty 699
The Ranh Condition of Identịftabiỉity 700
19.4 ATest of Simultancity 703
Hausman Specịftcaíion Test 703
19.5 Tests for Exogeneity 705
Summary and Conclusions 706
Exercỉses 706
CHAPTER 20
Simultaneous-Equation Methods 711
20.1 Approaches to Estimation 71 Ì
20.2 Recursive Models and Ordinary
Least Squares 712
20.3 Estimation of a Just Identiíìed Equation: The
Method of Indirect Least Squares (ILS) 715
An Ilỉustrative Example 715
Properties o/ĨLS Estimators 718
20.4 Estimation ót"an Overidentitìed Equation:
The Mcthod ofTwo-Stage Least Squares
(2SLS) 718
20.5 2SLS: A Numerical Example 721
20.6 Illustrative Examplcs 724
Summary and Conclusions 730
Exercises 730
Appendix 20A 735
20A.1 Bias ìn the [ndirect Least-Squares
CHAPTER 21 Tim20A. S1.o1me2eSerie Estĩmatio Estimator Estimator Serie ABasi LooscskConcept Econometrics 73nást8oSelecte 73fStandar 56 sd 73u.sd 7Error :. Economi s of2SLc TimS e
21.2 KeyConcepts 739
21.3 Stochastic Processes 740
Stationary Stochastic Processes 740
Nonstatìonary Stochastic Processes 74 ỉ
21.4 Unit Root Stochastic Process 744
21.5 Trend Stationary (TS) and DiíTerence
Staĩionary (DS) Stochastic Processes 745
21.6 Integrated Stochastic Processes 746
Properties oi/ntegrated Serìes 747
21.7 The Phenomenon of Spurious
Regression 747
21.8 Tests of Stationarìty 748
/. Graphỉcal Anatysis 749
2. Autocorreỉation Function (ACFt
anả Corrvlogram 749
Statisticaì Sigrứficance of Autocorreiatìon
Coefficierits 753
21.9 The Lĩnh Root Test 754
TheAugmented Díckẹy-Fuiier (ADF)
Tesí 757
Testing the Signựỉcance ofMore than One
c<it>fficiem: The F Test 758
The Philiips Perron (PP) Unit
Root Tests 758
Testing for Strucíurai Changes 75H
Ả Critique of the Vnỉt Rom Tests 75V
21.10 Transíòrming Nonstationary Time Series 760
DỊffẽrenceStatiơnary Processes 760
TrendStatỉonary Processes 761
21.11 Cointegration: Regression of a Unit
Root Time Series ôn Anothcr Unit Root
Time Series 762
Testing for Cointegration 763
Cointegratìon an ti Error Correction
Mechanìsm (ECM) 764
21.12 Some Economic Applications 765
Summary and Conclusions 768
CHAPTER 22 22.1 Approaches to Economic Porecasting 773 TimForecastin c Serie Exercise Exponentiai Singỉemuitaneous-Equation Models .4VAR g RỈA s 77 Econometrics s Modeh 76 ỈAEquation Regrvssion Models 3 774 9 Modeỉs Smoothing 775 : 774 Methods Regrẹssion 774 774
Số hóa bởi Trung tâm Học liệu – ĐH TN http://www.lrc-tnu.edu.vn