Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Applied Computational Fluid Dynamics Techniques - Wiley Episode 1 Part 7 doc
MIỄN PHÍ
Số trang
25
Kích thước
250.1 KB
Định dạng
PDF
Lượt xem
1718

Applied Computational Fluid Dynamics Techniques - Wiley Episode 1 Part 7 doc

Nội dung xem thử

Mô tả chi tiết

7 SOLUTION OF LARGE SYSTEMS

OF EQUATIONS

As we saw from the preceeding sections, both the straightforward spatial discretization of

a steady-state problem and the implicit time discretization of a transient problem will yield

a large system of coupled equations of the form

K · u = f. (7.1)

There are two basic approaches to the solution of this problem:

(a) directly, by some form of Gaussian elimination; or

(b) iteratively.

We will consider both here, as any solver requires one of these two, if not both.

7.1. Direct solvers

The rapid increase in computer memory, and their suitability for shared-memory multi￾processing computing environments, has lead to a revival of direct solvers (see, e.g.,

Giles et al. (1985)). Three-dimensional problems once considered unmanageable due to their

size are now being solved routinely by direct solvers (Wigton et al. (1985), Nguyen et al.

(1990), Dutto et al. (1994), Luo et al. (1994c)). This section reviews the direct solvers most

commonly used.

7.1.1. GAUSSIAN ELIMINATION

This is the classic direct solver. The idea is to add (subtract) appropriately scaled rows in the

system of equations in order to arrive at an upper triangular matrix (see Figure 7.1(a)):

K · u = f → U · u = f 

. (7.2)

To see how this is done in more detail, and to obtain an estimate of the work involved, we

rewrite (7.1) as

Kijuj = f i

. (7.3)

Suppose that the objective is to obtain vanishing entries for all matrix elements located in

the j th column below the diagonal Kjj entry. This can be achieved by adding to the kth row

(k>j ) an appropriate fraction of the j th row, resulting in

(Kkl + αkKjl)ul = f k + αkf j , k > j. (7.4)

Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods, Second Edition.

Rainald Löhner © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-51907-3

138 APPLIED COMPUTATIONAL FLUID DYNAMICS TECHNIQUES

=

K uf

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

L

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

0

0

0

=

U uf

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

0

0

0

=

K uf

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

L

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

0

0

0

=

L uf

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

0

0

0

t

=

K uf

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

=

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

￾￾￾￾￾￾￾￾￾￾￾￾

0

0

0

)

)

)

a)

K u f'

b)

c)

Figure 7.1. Direct solvers: (a) Gaussian elimination; (b) Crout decomposition; (c) Cholesky

Such an addition of rows will not change the final result for u and is therefore allowable. For

th

Tải ngay đi em, còn do dự, trời tối mất!