Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Analysis of milling stability based on cutting force signal processing
Nội dung xem thử
Mô tả chi tiết
國立臺灣科技大學
機械工程系
碩士學位論文
學號:M10403802
以切削力訊號分析銑削加工穩定性
Analysis of Milling Stability Based on
Cutting Force Signal Processing
(Draft)
研究生:Tran Minh Quang
指導教授:Chun-Hui Chung, Meng-Kun Liu
中華民國 一零六 年 六月 三十日
i
摘要
銑削加工是一種非常常見的成型加工方法,而在銑削加工的過程中,不
適當的加工參數會使刀具產生顫震,其顫震原因來自於刀刃與工件之間呈現週
期性的不連續切削行為,造成切屑厚度週期性的變化,使得刀具產生自激性的
震動以及不穩定的切削行為,而顫震會使銑削加工的不穩定性以及降低切削效
率,造成尺寸精度、刀具壽命以及表面完整性的下降,因此本研究主要目標為
建立完整之刀具壽命下,開發端銑刀的動態切削力模組,對於銑削加工潛在的
顫震進行探討。以模組的方式模擬出之切削立,與實際切削所獲得之切削力進
行時間及頻率域比較,我們發現時域、頻率域、短時距傅立葉變換、連率小波
轉換以及希爾伯特-黃轉換進行顫震訊號分析,相較於使用傅立葉變換光譜法
所獲得之結果是徹底地不同,傅立葉變換光譜法在應用於大量的非線性訊號效
率極低,進行動態切削力模組模擬之訊號與實驗所獲得之切削力訊號比較,發
現顫震頻率主要由兩個現象之頻率所構成,為刀刃通過工件時之頻率以及顫震
造成的不穩定高頻,此外,以 standard deviation 以及本質模態函數方式所獲
得之能量比,可有效率的辦別出刀具顫震,最後通過工件表面形貌、表面粗糙
度和穩定性波瓣圖驗證其分析結果。
關鍵字:銑削加工、刀具顫震、時頻分析、小波分析、希爾伯特-黃轉換
ii
Abstract
The milling operation is the most common form of machining. Because the action of
each cutting edge and workpiece is intermittent and periodical, the chip thickness varies
periodically. This could lead to self-excited vibrations and unstable cutting which is called
chatter vibration. Chatter causes machining instability and reduces productivity in the metal
cutting process. It has negative effects on the surface finish, dimensional accuracy, tool life
and machine life. Chatter identification is therefore necessary to control, prevent, or eliminate
chatter and to identify the stable machining condition. A dynamic cutting force model of the
end-milling process with tool runout error was established in this research to understand the
underlying mechanism of chatter. The accuracy of the cutting force model in both time and
frequency domains was evaluated by comparing to experimental force signals. Timefrequency analysis approaches, specifically short time Fourier transform, continuous wavelet
transform and Hilbert-Huang transform, were utilized to give an utterly different perspective
of chatter from the conventional Fourier spectrum which is insufficient in analyzing the
signals of rich nonlinear characteristics. By comparing the simulation with experimental
result, chatter frequency was found to consist of two major components, frequency
modulation alongside tooth passing frequency caused by the increased tool runout error and
the non-stationary high frequency from the regenerative vibration. Moreover, dimensionless
chatter indicators, defined by the standard deviation and energy ratio of the specific intrinsic
mode function, could identify the occurrence of chatter effectively. The analysis result was
then validated by the workpiece surface topography, surface roughness and the stability lobe
diagram.
Keywords: Milling process, Chatter detection, Time-frequency analysis, Wavelet transform,
Hilbert Huang transform.
iii
Acknowledgement
I would like to thank all the people who helped me to finish this thesis. First of all, I
would like to express my deep gratitude to my academic advisors: Professor. Chun-Hui
Chung and Professor. Meng-Kun Liu for their valuable guidance, encouragement, and support
throughout my work towards this thesis. Without their help and guidance, this work would
not be possible.
I also would like to thank Mr. Yi-Wen Qui who provided his experimental data which
was used to verify my methodology in this thesis. I would like to thank all of my labmates
who have supported me a lot with laboratory facilities so that I could conduct my experiments.
I thank my friends who always give me encouragements and supports during my research.
Finally, I would like to thank my parents who always give me love, encouragement,
and support throughout my life. I would specially thank my wife and my son for their patience
and support during my study. I am very grateful for their love.
iv
Nomenclature
db
discretized axial depth of cut (mm)
, K K ne te
radial and tangential edge
coefficients (N/mm)
n
dF
differential radial cutting force (N)
Nt
number of flutes
t
dF
differential tangential cutting force
(N)
r
edge radius (mm)
x
dF
differential cutting force in x-direction
(N)
x y,
displacement in x and y directions
(mm)
y dF
differential cutting force in y direction
(N)
z
absolute value of the distance from
the end (mm)
t
f
feed per tooth (mm/flute)
helix angle (deg)
F
s
sampling rate frequency (Hz)
immersion angle (deg)
Fsi
simulated cutting force (N)
e
exit angle (deg)
F
ex
experimental cutting force (N)
s
start angle (deg)
b
axial depth of cut (mm)
c
chatter frequency (rad/s)
h
instantaneous chip thickness (mm)
spindle speed (rpm)
K
s
specific cutting force coefficient (N)
position angle (deg)
cutting force angle (deg)
runout of cutting edge (mm)
, K Kn t
radial and tangential cutting
coefficients (N/mm2
)
time for one rotation (sec)
v
Contents
摘要 ..........................................................................................................................................i
Abstract ..................................................................................................................................ii
Acknowledgement ................................................................................................................. iii
Nomenclature..........................................................................................................................iv
Contents...................................................................................................................................v
Chapter 1 ................................................................................................................................1
Introduction............................................................................................................................1
1.1. Background ...........................................................................................................1
1.2. Objective and Scope..............................................................................................2
1.3. Outlines and Contribution of the Chapters............................................................3
Chapter 2 ................................................................................................................................4
Literature Review ..................................................................................................................4
2.1. Chatter Vibrations in Milling........................................................................................4
2.2. Signal Analysis Approaches .........................................................................................6
Chapter 3 ..............................................................................................................................10
Dynamic Cutting Force Model ...........................................................................................10
3.1. Regenerative Chatter Model .......................................................................................10
3.2. Dynamic Cutting Force Model ...................................................................................15
Chapter 4 ..............................................................................................................................17
Experimental Setup and Model Verification ....................................................................17
4.1. Overview and Aim......................................................................................................17
4.2. Experimental Setup.....................................................................................................17