Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

An introduction to the theory of functional equations and inequalities
Nội dung xem thử
Mô tả chi tiết
Marek Kuczma
An Introduction to the
Theory of Functional Equations
and Inequalities
Cauchy’s Equation and Jensen’s Inequality
Second Edition
Edited by
Attila Gilányi
Birkhäuser
Basel · Boston · Berlin
2000 Mathematical Subject Classification: 39B05, 39B22, 39B32, 39B52, 39B62, 39B82,
26A51, 26B25
The first edition was published in 1985 by Uniwersytet Slaski (Katowicach) (Silesian
University of Katowice) and Pánstwowe Wydawnictwo Naukowe (Polish Scientific Publishers)
© Uniwersytet Slaski and Pánstwowe Wydawnictwo Naukowe
Library of Congress Control Number: 2008939524
Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.
ISBN 978-3-7643-8748-8 Birkhäuser Verlag AG, Basel – Boston – Berlin
This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in
data banks. For any kind of use permission of the copyright owner must be obtained.
© 2009 Birkhäuser Verlag AG
Basel · Boston · Berlin
P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Printed on acid-free paper produced of chlorine-free pulp. TCF ∞
Printed in Germany
ISBN 978-3-7643-8748-8 e-ISBN 978-3-7643-8749-5
9 8 7 6 5 4 3 2 1 www.birkhauser.ch
Editor:
Attila Gilányi
Institute of Mathematics
University of Debrecen
P.O. Box 12
4010 Debrecen
Hungary
e-mail: [email protected]
´
´
Preface to the Second Edition
The first edition of Marek Kuczma’s book An Introduction to the Theory of Functional Equations and Inequalities was published more than 20 years ago. Since then
it has been considered as one of the most important monographs on functional equations, inequalities and related topics. As J´anos Acz´el wrote in Mathematical Reviews
“... this is a very useful book and a primary reference not only for those working in
functional equations, but mainly for those in other fields of mathematics and its applications who look for a result on the Cauchy equation and/or the Jensen inequality.”
Based on the considerably high demand for the book, which has even increased
after the first edition was sold out several years ago, we have decided to prepare its
second edition. It corresponds to the first one and keeps its structure and organization
almost everywhere. The few changes which were made are always marked by footnotes.
Several colleagues helped us in the preparation of the second edition. We cordially thank Roman Ger for his advice and help during the whole publication process,
Karol Baron and Zolt´an Boros for their conscientious proofreading, and Szabolcs
Baj´ak for typing and continuously correcting the manuscript. We are grateful to
Eszter Gselmann, Fruzsina M´esz´aros, Gy¨ongyv´er P´eter and P´al Burai for typesetting
several chapters, and we would like to thank the publisher, Birkh¨auser, for undertaking and helping with the publication.
The new edition of Marek Kuczma’s book is paying tribute to the memory
of the highly respected teacher, the excellent mathematician and one of the most
outstanding researchers of functional equations and inequalities.
Debrecen, October 2008
Attila Gil´anyi
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Part I Preliminaries
1 Set Theory
1.1 Axioms of Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Ordinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Sets of ordinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Cardinality of ordinal numbers . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Transfinite induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 The Zermelo theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Lemma of Kuratowski-Zorn . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Topology
2.1 Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Baire property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Borel sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 The space z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Analytic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Operation A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Theorem of Marczewski . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8 Cantor-Bendixson theorem . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 Theorem of S. Piccard . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Measure Theory
3.1 Outer and inner measure . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Linear transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Saturated non-measurable sets . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Lusin sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Outer density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Some lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
viii Contents
3.7 Theorem of Steinhaus . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 Non-measurable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 Algebra
4.1 Linear independence and dependence . . . . . . . . . . . . . . . . . . . 75
4.2 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Groups and semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6 Partitions of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 Rings and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.8 Algebraic independence and dependence . . . . . . . . . . . . . . . . . 101
4.9 Algebraic and transcendental elements . . . . . . . . . . . . . . . . . . 103
4.10 Algebraic bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.11 Simple extensions of fields . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.12 Isomorphism of fields and rings . . . . . . . . . . . . . . . . . . . . . . 108
Part II Cauchy’s Functional Equation and Jensen’s Inequality
5 Additive Functions and Convex Functions
5.1 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Additive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4 Homogeneity fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.5 Additive functions on product spaces . . . . . . . . . . . . . . . . . . . 138
5.6 Additive functions on C . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6 Elementary Properties of Convex Functions
6.1 Convex functions on rational lines . . . . . . . . . . . . . . . . . . . . 143
6.2 Local boundedness of convex functions . . . . . . . . . . . . . . . . . . 148
6.3 The lower hull of a convex functions . . . . . . . . . . . . . . . . . . . 150
6.4 Theorem of Bernstein-Doetsch . . . . . . . . . . . . . . . . . . . . . . 155
7 Continuous Convex Functions
7.1 The basic theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Compositions and inverses . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3 Differences quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.5 Differential conditions of convexity . . . . . . . . . . . . . . . . . . . . 171
7.6 Functions of several variables . . . . . . . . . . . . . . . . . . . . . . . 174
7.7 Derivatives of a function . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.8 Derivatives of convex functions . . . . . . . . . . . . . . . . . . . . . . 180
7.9 Differentiability of convex functions . . . . . . . . . . . . . . . . . . . . 188
7.10 Sequences of convex functions . . . . . . . . . . . . . . . . . . . . . . . 192
Contents ix
8 Inequalities
8.1 Jensen inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.2 Jensen-Steffensen inequalities . . . . . . . . . . . . . . . . . . . . . . . 201
8.3 Inequalities for means . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.4 Hardy-Littlewood-P´olya majorization principle . . . . . . . . . . . . . 211
8.5 Lim’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.6 Hadamard inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.7 Petrovi´c inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.8 Mulholland’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.9 The general inequality of convexity . . . . . . . . . . . . . . . . . . . . 223
9 Boundedness and Continuity of Convex Functions and Additive Functions
9.1 The classes A,B,C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
9.2 Conservative operations . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.3 Simple conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.4 Measurability of convex functions . . . . . . . . . . . . . . . . . . . . . 241
9.5 Plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.6 Skew curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
9.7 Boundedness below . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
9.8 Restrictions of convex functions and additive functions . . . . . . . . . 251
10 The Classes A, B, C
10.1 A Hahn-Banach theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 257
10.2 The class B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
10.3 The class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
10.4 The class A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
10.5 Set-theoretic operations . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.6 The classes D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.7 The classes AC and BC . . . . . . . . . . . . . . . . . . . . . . . . . . 276
11 Properties of Hamel Bases
11.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
11.2 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
11.3 Topological properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
11.4 Burstin bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
11.5 Erd˝os sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.6 Lusin sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
11.7 Perfect sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
11.8 The operations R and U . . . . . . . . . . . . . . . . . . . . . . . . . . 301
x Contents
12 Further Properties of Additive Functions and Convex Functions
12.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
12.2 Additive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.3 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
12.4 Big graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
12.5 Invertible additive functions . . . . . . . . . . . . . . . . . . . . . . . . 322
12.6 Level sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
12.7 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
12.8 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Part III Related Topics
13 Related Equations
13.1 The remaining Cauchy equations . . . . . . . . . . . . . . . . . . . . . 343
13.2 Jensen equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
13.3 Pexider equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
13.4 Multiadditive functions . . . . . . . . . . . . . . . . . . . . . . . . . . 363
13.5 Cauchy equation on an interval . . . . . . . . . . . . . . . . . . . . . . 367
13.6 The restricted Cauchy equation . . . . . . . . . . . . . . . . . . . . . . 369
13.7 Hossz´u equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
13.8 Mikusi´nski equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
13.9 An alternative equation . . . . . . . . . . . . . . . . . . . . . . . . . . 380
13.10The general linear equation . . . . . . . . . . . . . . . . . . . . . . . . 382
14 Derivations and Automorphisms
14.1 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
14.2 Extensions of derivations . . . . . . . . . . . . . . . . . . . . . . . . . . 394
14.3 Relations between additive functions . . . . . . . . . . . . . . . . . . . 399
14.4 Automorphisms of R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
14.5 Automorphisms of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
14.6 Non-trivial endomorphisms of C . . . . . . . . . . . . . . . . . . . . . 406
15 Convex Functions of Higher Orders
15.1 The difference operator . . . . . . . . . . . . . . . . . . . . . . . . . . 415
15.2 Divided differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
15.3 Convex functions of higher order . . . . . . . . . . . . . . . . . . . . . 429
15.4 Local boundedness of p-convex functions . . . . . . . . . . . . . . . . . 432
15.5 Operation H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
15.6 Continuous p-convex functions . . . . . . . . . . . . . . . . . . . . . . 439
15.7 Continuous p-convex functions. Case N = 1 . . . . . . . . . . . . . . . 442
15.8 Differentiability of p-convex functions . . . . . . . . . . . . . . . . . . 444
15.9 Polynomial functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Contents xi
16 Subadditive Functions
16.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
16.2 Boundedness. Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 458
16.3 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
16.4 Sublinear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
16.5 Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
16.6 Infinitary subadditive functions . . . . . . . . . . . . . . . . . . . . . . 475
17 Nearly Additive Functions and Nearly Convex Functions
17.1 Approximately additive functions . . . . . . . . . . . . . . . . . . . . . 483
17.2 Approximately multiadditive functions . . . . . . . . . . . . . . . . . . 485
17.3 Functions with bounded differences . . . . . . . . . . . . . . . . . . . . 486
17.4 Approximately convex functions . . . . . . . . . . . . . . . . . . . . . 490
17.5 Set ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
17.6 Almost additive functions . . . . . . . . . . . . . . . . . . . . . . . . . 505
17.7 Almost polynomial functions . . . . . . . . . . . . . . . . . . . . . . . 510
17.8 Almost convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . 515
17.9 Almost subadditive functions . . . . . . . . . . . . . . . . . . . . . . . 524
18 Extensions of Homomorphisms
18.1 Commutative divisible groups . . . . . . . . . . . . . . . . . . . . . . . 535
18.2 The simplest case of S generating X . . . . . . . . . . . . . . . . . . . 537
18.3 A generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
18.4 Further extension theorems . . . . . . . . . . . . . . . . . . . . . . . . 546
18.5 Cauchy equation on a cylinder . . . . . . . . . . . . . . . . . . . . . . 551
18.6 Cauchy nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
18.7 Theorem of Ger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
18.8 Inverse additive functions . . . . . . . . . . . . . . . . . . . . . . . . . 564
18.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
Indices
Index of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Index of Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Introduction
The present book is based on the course given by the author at the Silesian University
in the academic year 1974/75, entitled Additive Functions and Convex Functions.
Writing it, we have used excellent notes taken by Professor K. Baron.
It may be objected whether an exposition devoted entirely to a single equation
(Cauchy’s Functional Equation) and a single inequality (Jensen’s Inequality) deserves
the name An introduction to the Theory of Functional Equations and Inequalities.
However, the Cauchy equation plays such a prominent role in the theory of functional
equations that the title seemed appropriate. Every adept of the theory of functional
equations should be acquainted with the theory of the Cauchy equation. And a systematic exposition of the latter is still lacking in the mathematical literature, the
results being scattered over particular papers and books. We hope that the present
book will fill this gap.
The properties of convex functions (i.e., functions fulfilling the Jensen inequality)
resemble so closely those of additive functions (i.e., functions satisfying the Cauchy
equation) that it seemed quite appropriate to speak about the two classes of functions
together.
Even in such a large book it was impossible to cover the whole material pertinent
to the theory of the Cauchy equation and Jensen’s inequality. The exercises at the
end of each chapter and various bibliographical hints will help the reader to pursue
further his studies of the subject if he feels interested in further developments of
the theory. In the theory of convex functions we have concentrated ourselves rather
on this part of the theory which does not require regularity assumptions about the
functions considered. Continuous convex functions are only discussed very briefly in
Chapter 7.
The emphasis in the book lies on the theory. There are essentially no examples
or applications. We hope that the importance and usefulness of convex functions
and additive functions is clear to everybody and requires no advertising. However,
many examples of applications of the Cauchy equation may be found, in particular, in
books Acz´el [5] and Dhombres [68]. Concerning convex functions, numerous examples
are scattered throughout almost the whole literature on mathematical analysis, but
especially the reader is referred to special books on convex functions quoted in 5.3.
We have restricted ourselves to consider additive functions and convex functions
defined in (the whole or subregions of) N-dimensional euclidean space RN . This gives
the exposition greater uniformity. However, considerable parts of the theory presented
xiv Introduction
can be extended to more general spaces (Banach spaces, topological linear spaces).
Such an approach may be found in some other books (Dhombres [68], Roberts-Varberg
[267]). Only occasionally we consider some functional equations on groups or related
algebraic structures.
We assume that the reader has a basic knowledge of the calculus, theory of
Lebesgue’s measure and integral, algebra, topology and set theory. However, for the
convenience of the reader, in the first part of the book we present such fragments of
those theories which are often left out from the university courses devoted to them.
Also, some parts which are usually included in the university courses of these subjects
are also very shortly treated here in order to fix the notation and terminology.
In the notation we have tried to follow what is generally used in the mathematical
literature1. The cardinality of a set A is denoted by cardA. The word countable or
denumerable refers to sets whose cardinality is exactly ℵ0. The topological closure and
interior of A are denoted by cl A and int A. Some special letters are used to denote
particular sets of numbers. And so N denotes the set of positive integers, whereas
Z denotes the set of all integers. Q stands for the set of all rational numbers, R for
the set of all real numbers, and C for the set of all complex numbers. The letter
N is reserved to denote the dimension of the underlying space. The end of every
proof is marked by the sign . Other symbols are introduced in the text, and for the
convenience of the reader they are gathered in an index at the end of the volume.
The book is divided in chapters, every chapter is divided into sections. When
referring to an earlier formula, we use a three digit notation: (X.Y.Z) means formula
Z in section Y in Chapter X. The same rule applies also to the numbering of theorems
and lemmas. When quoting a section, we use a two digit notation: X.Y means section
Y in Chapter X. The same rule applies also to exercises at the end of each chapter. The
book is also divided in three parts, but this fact has no reflection in the numeration.
Many colleagues from Poland and abroad have helped us with bibliographical
hints and otherwise. We do not endeavour to mention all their names, but nonetheless
we would like to thank them sincerely at this place. But at least two names must be
mentioned: Professor R. Ger, and above all, Professor K. Baron, whose help was
especially substantial, and to whom our debt of gratitude is particularly great. We
thank also the authorities of the Silesian University in Katowice, which agreed to
publish this book. We hope that the mathematical community of the world will find
it useful.
Katowice, July 1979
Marek Kuczma
1The notation in the second edition has been slightly changed. The following sentences are modified
accordingly.
Part I
Preliminaries