Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Advances in information technologies for electromagnetics
PREMIUM
Số trang
473
Kích thước
11.9 MB
Định dạng
PDF
Lượt xem
1907

Advances in information technologies for electromagnetics

Nội dung xem thử

Mô tả chi tiết

Advances in Information Technologies for Electromagnetics

Edited by

and

Advances in Information

Technologies for

Electromagnetics

Luciano Tarricone

University of Lecce, Italy

University of Lecce, Italy

Alessandra Esposito

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands

© 2006 Springer

www.springer.com

ISBN-10 1-4020-4748-7 (HB)

ISBN-13 978-1-4020-4748-0 (HB)

ISBN-10 1-4020-4749-5 (e-book)

ISBN-13 978-1-4020-4749-5 (e-book)

Dedication

This book is dedicated to

Edoardo and Silvia

Contents

1 Parallel and Distributed Environments 1

A. Esposito

1. INTRODUCTION 1

2. BASIC CONCEPTS 2

3. PARALLEL PROGRAMMING 3

3.1 Introduction 3

3.1.1 MPI 5

3.2 Performance Assessment

4. DISTRIBUTED SYSTEMS 6

4.1 Introduction 6

4.2 RPC 7

4.3 Mobile Agent Framework

5. THE WEB 8

5.1 XML

5.1.1 Introduction 10

5.1.2

5.1.3 Namespaces 13

5.1.4

5.1.5 Applications

Contributing Authors xvii

Preface xxi

Acknowledgments xxvii

XML Fundamentals

XML Schema

2 Object-Oriented Technologies

A. Esposito

1. INTRODUCTION

2. OO PROGRAMMING

10

6

12

15

16

19

19

20

8

viii

2.1 Basic Concepts

2.2 Java

2.2.1 Introduction

2.2.2 The Language

3. OO DISTRIBUTED FRAMEWORKS

3.1 Introduction

3.1.1 Java RMI

3.2 Java Mobile Agents

3 The Semantic Web

A. Esposito

1. INTRODUCTION

2. DESCRIPTION LOGICS

2.1 Introduction

2.2 A Model for Reality: The TBox

2.2.1 Constructors

2.2.2 Axioms

2.3 The ABox

2.4 Reasoners

3. TOOLS FOR THE SEMANTIC WEB

3.1 Languages

3.2 Reasoners

3.3 Tools for Building Ontologies

4 Web Services

A. Esposito

1. INTRODUCTION

2. BASIC CONCEPTS

2.1 Web Services Architecture

3. WEB SERVICES DESCRIPTION: WSDL

4. AUTOMATIC DISCOVERY OF WEB SERVICES

4.1 UDDI

4.2 The Semantic Web Services

Contents

5 Grid Computing

1. INTRODUCTION

2. GC BASIC CONCEPTS

A. Esposito

20

23

23

24

26

27

29

29

31

31

31

33

35

37

38

41

41

42

43

45

45

46

46

48

50

50

50

55

55

56

26

26

ix

3. THE GLOBUS TOOLKIT

3.1 GT and Web Services

4. GT COMPONENTS

5. JOB MANAGEMENT

5.1 GC for HPC

6. INFORMATION SERVICES

7. DATA MANAGEMENT

6 Complex Computational Electromagnetics using Hybridisation

Techniques

R. A. Abd-Alhameed and P. S. Excell

1. INTRODUCTION

1.1 Integral Equation Methods

1.2 Differential Equation Methods

1.3 The Advantages and Disadvantages of the Methods

1.4 Hybrid Methods

1.5 Literature Review

2. OUTLINE OF THEORY AND IMPLEMENTATION OF HYBRID

METHOD

2.1 Hybrid Treatment for Homogeneous Multiple Elements

2.1.1 Hybrid MoM/MoM Treatment for Two Elements

(Sub-Matrices Iterative Technique)

2.1.2 Hybrid MoM/MoM Method for Two Elements

2.1.3 Extension of Hybrid MoM/MoM Method from

Two Elements to Multiple Elements (Field Transfer

Iterative Technique)

2.1.4 Hybrid MoM in Multiple Regions Using

3. INCIDENT WAVE EXCITATIONS IN THE FDTD METHOD

3.1 Total/Scattered Field Formulation in Three Dimensions

4. MODIFIED TOTAL/SCATTERED FIELD FORMULATION

FOR THE HYBRID TECHNIQUE

Contents

the Equivalence Principle Surface

5. VALIDATION OF TOTAL/SCATTERED FIELD

HOMOGENEOUS FDTD IN MULTIPLE REGIONS

FORMULATION IMPLEMENTATION USING

57

58

60

61

61

62

65

69

70

70

70

74

80

80

81

84

88

91

101

102

107

110

71

72

(Field Transfer Iterative Technique)

x

6. HYBRID MOM/FDTD TECHNIQUE ALGORITHM

6.1 Theoretical Formulation

6.2 Multiple-Source Scattering Problems

7. NEC/FDTD HYBRID PROGRAM

8. FAR FIELD CALCULATIONS USING THE HYBRID CODE

9.

TECHNIQUE

7 Enhanced EM software for Planar Circuits

1. INTRODUCTION

1.1 Setting and Definition of the Research Topic

1.1.1 High-Frequency Applications and Design

1.1.2 Planar Circuits and Planar Solvers

1.1.3 Some Advantages and Drawbacks of BIE-MoM Based

Planar Solvers

1.2 Methodology

1.2.1 Perfectly Matched Layer (PML) Based Green’s

Functions

1.2.2 Iterative Solvers

1.2.3 Fast Multipole Method (FMM)

1.3 Outline

2. CLASSICAL SOLUTION TECHNIQUE FOR MICROSTRIP

STRUCTURES

2.1 Geometry of the Problem

2.2 The EFIE Description

2.3 The Green’s Dyadic ( | ') G rr ee

2.3.1 Integral Representation

2.3.2 Sommerfeld-Integrals

2.4 The Method of Moments

3.

3.1

3.1.1 The Split Field Formalism

3.1.2 Complex Coordinate Stretching Formalism

3.2 Closure of Open Microstrip Substrates

Contents

NUMERICAL EXAMPLES USING THE HYBRID MoM/FDTD

FUNCTIONS FOR LAYERED MEDIA

PERFECTLY MATCHED LAYER BASED GREEN’S

D. Vande Ginste, F. Olyslager, D. De Zutter and E. Michielssen

3.2.1 Procedure and Influence on the Green’s Functions

3.2.2 Complex Thickness

3.2.3 Dispersion Relations

10. SUMMARY

112

113

116

120

123

123

140

147

148

148

148

149

150

151

153

154

155

156

156

157

158

158

160

161

163

163

163

164

165

165

166

167

151

The Perfectly Matched Layer Concept

xi

3.3 Series Expansion for the Green’s Dyadic Gee

3.3.1 Integral Representation

3.3.2 Gee xx ,

3.3.3 Gee xy ,

3.3.4 Closed-Form Expression for Gee

3.3.5 Important Remarks Concerning the Series Expansion

4. A PML-MLMFA FOR THE MODELING OF LARGE PLANAR

MICROSTRIP STRUCTURES

4.1 Introduction and Outline

4.2 Formulation of the Technique

4.2.1 The moment Matrix Written as Interactions Between

4.2.2 Plane Wave Decomposition of the Hankel Function

4.2.3 Core Equation of the PML-MLFMA for Microstrip

Structures

4.3 Implementation of the Technique

4.3.1 Construction of the MLFMA Tree

4.3.2 The Matrix-Vector Multiplication

4.4 Some Important Remarks about the Complexity of the

PML-MLFMA

4.4.1 Memory and Computational Complexity

4.4.2 Mode Trimming

4.4.3 Determination of the Sampling Rates TX, 2 1 l Q n +

4.5 Numerical Results

4.5.1 Validation of the Method

4.5.2 Computational and Memory Efficiency

4.5.3 Application Examples

5. EXTENSIONS AND CONCLUSIONS

5.1 Extensions

5.1.1 Development of a Low-Frequency Algorithm

5.1.2 Combination of the HF- and the LF-Technique

5.1.3

5.2 Conclusions

8 Parallel Grid-enabled FDTD for the Characterization

Contents

Extension to General Multilayered Structures

L. Catarinucci, G. Monti, P. Palazzari and L. Tarricone

1. INTRODUCTION

2. INTRODUCTION TO METAMATERIALS

2.1 DNG Metamaterials

168

168

168

172

172

173

174

174

175

175

176

178

180

180

185

195

195

195

196

197

197

204

206

210

210

213

214

215

of Metamaterials 223

223

224

225

210

Elementary Current Sources

xii

3. NEGATIVE REFRACTION

4. HOW TO SYNTHESIZE A DNG MEDIUM

5. DNG MEDIA APPLICATIONS

6. MODULATED SIGNALS IN A DNG MEDIUM

6.1 Dispersion

6.2 Gaussian Pulse in a DNG Slab

7. NUMERICAL METHODS FOR METAMATERIALS

7.1 Bases for the FDTD Method

7.2 Parallel Grid-Enabled FDTD using MPI

7.3 Efficient Subgridding Technique for Parallel FDTD

Algorithms: Variable Mesh FDTD

7.4

7.5

9 A Software Tool for Quasi-Optical Systems

N. C. Albertsen, P. E. Frandsen and S. B. Sørensen

1. INTRODUCTION

2. REQUIREMENTS FOR QUASI-OPTICAL NETWORK

DESIGN

3.

4. ANALYSIS METHODS

5. USER INTERFACE - THE FRAME EDITOR

6. COMPONENTS AND OBJECTS: THE OBJECT WIZARD

7. COMPLEX COMMANDS: THE COMMAND WIZARD

8. FRAME CONNECTIONS AND 3D MODELLING

9. EVALUATION AND FUTURE EXTENSIONS

10 Cooperative Computer Aided Engineering of Antenna Arrays

A. Esposito, L. Tarricone, L. Vallone and M. Vallone

1. INTRODUCTION

2. CAE OF APERTURE ANTENNA ARRAYS

3. GRID SERVICES AND SEMANTIC GRID

4. SYSTEM ARCHITECTURE

5. THE FRAMEWORK

5.1 Introduction

5.2 Grid Infrastructure

5.3 Encapsulation into Services

Contents

FDTD Methods and DNG Materials

DNG Slabs: Reflection by and Propagation in a DNG Slab

OUTLINE OF THE SOFTWARE SYSTEM

5.4 Ontology

5.4.1 Introduction

227

228

234

236

242

236

237

242

249

250

256

257

265

265

267

271

274

276

281

283

286

291

295

295

296

297

298

301

302

301

303

306

306

xiii

5.4.2 Service Discovery

5.4.3 Service Orchestration

5.4.4 Service Binding

5.5 Client Application

5.5.1 Introduction

5.5.2 Service Discovery

5.5.3 Service Orchestration

5.5.4 Service Invocation

6.

11

D. Caromel, F. Huet, S. Lanteri and N. Parlavantzas

1. INTRODUCTION

2. DISTRIBUTED OBJECTS: PROACTIVE

2.1 Basic Model

2.2 Mapping Active Objects to JVMs: Nodes

2.3 Deployment Descriptors

2.4 Group Communications

3. OO DISTRIBUTED FINITE VOLUME SOLVER

3.1 Basic Architecture of the OO Model

3.2 Distribution and Parallelization

4.

4.1 Comparison with a Fortran Implementation

4.2 Grid’5000 Experiments

5. ON-GOING AND FUTURE WORK

5.1 Application Controlled Deployment

5.2 Enhancing Modifiability Through Components

6. CONCLUSIONS

12

1. INTRODUCTION

2. CLASSIFICATION OF PARAMETRIC PROBLEMS IN CEM

2.1 “Method-level” Parametric Analysis

Contents

C. G. Biniaris and D. I. Kaklamani

D. G. Lymperopoulos, I. E. Foukarakis, A. I. Kostaridis,

2.2 “Application-level” Parametric Analysis

2.3 Population-Based Stochastic Optimisation

Software Agents for Parametric Computational

307

309

317

320

320

322

CONCLUSIONS 323

327

327

328

328

329

329

331

332

333

335

BENCHMARKS 337

337

338

339

339

339

342

Electromagnetics Applications 345

345

347

347

348

348

320

321

Electromagnetics on the Grid

Distributed and Object-Oriented Computational

xiv

3.

3.1 The Mobile Agent Paradigm

3.2

3.2.1 The Master Agent

3.2.2 The Worker Agent

3.3 A Brief Comparison Between MAT and MPI or PVM

4.

4.1 Mobile Agent Platform Components

4.2 Communication Mechanisms

4.3 Web-Based Infrastructure

4.3.1 Interaction With the User

4.3.2 Servlets for Front/Back-End Communication

4.4 Conformal Array Modelling: A Modified Method of Auxiliary

4.4.1 Problem Formulation

4.4.2 Overview of the Model Geometry

4.4.3 Agent Deployment Mechanisms

4.4.4 Simulation Results

4.5 Electromagnetic Penetration Through Apertures: A Resonator

Method of Moments (MoM) Model

4.5.1

4.5.2

4.5.3 Performance Results

5. INTRODUCING GENETIC SOFTWARE AGENTS

5.1 Distributed Genetic Algorithms with Agents

5.1.1 Entity Mappings

5.1.2 Parallel Processing Coordination

5.2 Proposed Architecture

5.2.1 Centralised Model

5.2.2 Decentralised Model

5.2.3 Hybrid Implementations

5.3 Conclusions

13 Web Services Enhanced Platform for Distributed Signal

Processing in Electromagnetics

1. INTRODUCTION

Contents

Mobile Agents in CEM: The Master-Worker Model

FOR PARAMETRIC CEM MODELING

A WEB-BASED MOBILE AGENT PLATFORM

Sources (MMAS) Approach

I. E. Foukarakis, D. B. Logothetis, A. I. Kostaridis,

D. G. Lymperopoulos and D. I. Kaklamani

2. WEB SERVICES IN DISTRIBUTED SAR MODELLING AND

SIGNAL PROCESSING

2.1 Platform Architecture

MOBILE SOFTWARE AGENTS 349

349

351

351

352

353

355

355

357

357

358

359

360

360

362

363

364

365

365

369

369

371

372

373

374

375

375

376

376

377

381

381

382

382

Parametric Simulations

Formulation of the Electromagnetic Problem

xv

2.2 Server Services

2.2.1 Node Management Service

2.2.2 Input Provider Service

2.2.3 Output Receiver Service

2.2.4 Scheduler

2.3 Node Services

2.3.1 Resource Manager Service

2.3.2 Task Executing Service

2.3.3 Remote Input Service

2.4 Other Issues

2.5 Imaging Radar Signal Processing

2.6 The Simulation Mechanism

2.7 Results and Conclusions

14 Grid-Enabled Transmission Line Matrix (TLM) Modelling

of Electromagnetic Structures

P. Russer, B. Biscontini and P. Lorenz

1. INTRODUCTION

2. THE 3D-TLM METHOD

3. MODELLING OF DIELECTRIC MEDIA

4. PARALLELIZATION OF THE TLM METHOD

4.1 Domain Decomposition

4.2 Decomposition of the TLM Algorithm

5.

5.1 The Components of the TLM-G System

5.2 The Relation Between YATWAD, YATD

and the Components of the Globus Toolkit

in the TLM-G System

6.

6.1 The Electromagnetic Performance of the TLM-G System

6.2 A Bowtie Antenna in a TLM-G System

7. THE CIRCULAR CYLINDRICAL CAVITY RESONATOR

Contents

LINE MATRIX SYSTEM

TLM-G: GRID-ENABLED TIME DOMAIN TRANSMISSION

SYSTEM AND EXAMPLES

ANALYSIS OF THE PERFORMANCE OF THE TLM-G

Glossary

Index

385

385

387

387

387

389

389

389

390

390

390

392

394

399

399

400

411

415

415

417

422

423

424

425

426

428

425

433

451

Contributing Authors

Raed A. Abd-Alhameed

University of Bradford, UK

Niels Christian Albertsen

Informatics and Mathematical Modelling, Technical University of Denmark

Christos G. Biniaris

School of Electrical and Computer Engineering, National Technical University of Athens,

Greece

Bruno Biscontini

Technische Universität München, Munich, Germany

Denis Caromel

INRIA, France

Luca Catarinucci

University of Lecce, Italy

Daniel De Zutter

Ghent University, Belgium

Alessandra Esposito

University of Lecce, Italy

Peter Stuart Excell

University of Bradford, UK

xvii

Tải ngay đi em, còn do dự, trời tối mất!