Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Advances in information technologies for electromagnetics
Nội dung xem thử
Mô tả chi tiết
Advances in Information Technologies for Electromagnetics
Edited by
and
Advances in Information
Technologies for
Electromagnetics
Luciano Tarricone
University of Lecce, Italy
University of Lecce, Italy
Alessandra Esposito
A C.I.P. Catalogue record for this book is available from the Library of Congress.
Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.
Printed on acid-free paper
All Rights Reserved
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.
Printed in the Netherlands
© 2006 Springer
www.springer.com
ISBN-10 1-4020-4748-7 (HB)
ISBN-13 978-1-4020-4748-0 (HB)
ISBN-10 1-4020-4749-5 (e-book)
ISBN-13 978-1-4020-4749-5 (e-book)
Dedication
This book is dedicated to
Edoardo and Silvia
Contents
1 Parallel and Distributed Environments 1
A. Esposito
1. INTRODUCTION 1
2. BASIC CONCEPTS 2
3. PARALLEL PROGRAMMING 3
3.1 Introduction 3
3.1.1 MPI 5
3.2 Performance Assessment
4. DISTRIBUTED SYSTEMS 6
4.1 Introduction 6
4.2 RPC 7
4.3 Mobile Agent Framework
5. THE WEB 8
5.1 XML
5.1.1 Introduction 10
5.1.2
5.1.3 Namespaces 13
5.1.4
5.1.5 Applications
Contributing Authors xvii
Preface xxi
Acknowledgments xxvii
XML Fundamentals
XML Schema
2 Object-Oriented Technologies
A. Esposito
1. INTRODUCTION
2. OO PROGRAMMING
10
6
12
15
16
19
19
20
8
viii
2.1 Basic Concepts
2.2 Java
2.2.1 Introduction
2.2.2 The Language
3. OO DISTRIBUTED FRAMEWORKS
3.1 Introduction
3.1.1 Java RMI
3.2 Java Mobile Agents
3 The Semantic Web
A. Esposito
1. INTRODUCTION
2. DESCRIPTION LOGICS
2.1 Introduction
2.2 A Model for Reality: The TBox
2.2.1 Constructors
2.2.2 Axioms
2.3 The ABox
2.4 Reasoners
3. TOOLS FOR THE SEMANTIC WEB
3.1 Languages
3.2 Reasoners
3.3 Tools for Building Ontologies
4 Web Services
A. Esposito
1. INTRODUCTION
2. BASIC CONCEPTS
2.1 Web Services Architecture
3. WEB SERVICES DESCRIPTION: WSDL
4. AUTOMATIC DISCOVERY OF WEB SERVICES
4.1 UDDI
4.2 The Semantic Web Services
Contents
5 Grid Computing
1. INTRODUCTION
2. GC BASIC CONCEPTS
A. Esposito
20
23
23
24
26
27
29
29
31
31
31
33
35
37
38
41
41
42
43
45
45
46
46
48
50
50
50
55
55
56
26
26
ix
3. THE GLOBUS TOOLKIT
3.1 GT and Web Services
4. GT COMPONENTS
5. JOB MANAGEMENT
5.1 GC for HPC
6. INFORMATION SERVICES
7. DATA MANAGEMENT
6 Complex Computational Electromagnetics using Hybridisation
Techniques
R. A. Abd-Alhameed and P. S. Excell
1. INTRODUCTION
1.1 Integral Equation Methods
1.2 Differential Equation Methods
1.3 The Advantages and Disadvantages of the Methods
1.4 Hybrid Methods
1.5 Literature Review
2. OUTLINE OF THEORY AND IMPLEMENTATION OF HYBRID
METHOD
2.1 Hybrid Treatment for Homogeneous Multiple Elements
2.1.1 Hybrid MoM/MoM Treatment for Two Elements
(Sub-Matrices Iterative Technique)
2.1.2 Hybrid MoM/MoM Method for Two Elements
2.1.3 Extension of Hybrid MoM/MoM Method from
Two Elements to Multiple Elements (Field Transfer
Iterative Technique)
2.1.4 Hybrid MoM in Multiple Regions Using
3. INCIDENT WAVE EXCITATIONS IN THE FDTD METHOD
3.1 Total/Scattered Field Formulation in Three Dimensions
4. MODIFIED TOTAL/SCATTERED FIELD FORMULATION
FOR THE HYBRID TECHNIQUE
Contents
the Equivalence Principle Surface
5. VALIDATION OF TOTAL/SCATTERED FIELD
HOMOGENEOUS FDTD IN MULTIPLE REGIONS
FORMULATION IMPLEMENTATION USING
57
58
60
61
61
62
65
69
70
70
70
74
80
80
81
84
88
91
101
102
107
110
71
72
(Field Transfer Iterative Technique)
x
6. HYBRID MOM/FDTD TECHNIQUE ALGORITHM
6.1 Theoretical Formulation
6.2 Multiple-Source Scattering Problems
7. NEC/FDTD HYBRID PROGRAM
8. FAR FIELD CALCULATIONS USING THE HYBRID CODE
9.
TECHNIQUE
7 Enhanced EM software for Planar Circuits
1. INTRODUCTION
1.1 Setting and Definition of the Research Topic
1.1.1 High-Frequency Applications and Design
1.1.2 Planar Circuits and Planar Solvers
1.1.3 Some Advantages and Drawbacks of BIE-MoM Based
Planar Solvers
1.2 Methodology
1.2.1 Perfectly Matched Layer (PML) Based Green’s
Functions
1.2.2 Iterative Solvers
1.2.3 Fast Multipole Method (FMM)
1.3 Outline
2. CLASSICAL SOLUTION TECHNIQUE FOR MICROSTRIP
STRUCTURES
2.1 Geometry of the Problem
2.2 The EFIE Description
2.3 The Green’s Dyadic ( | ') G rr ee
2.3.1 Integral Representation
2.3.2 Sommerfeld-Integrals
2.4 The Method of Moments
3.
3.1
3.1.1 The Split Field Formalism
3.1.2 Complex Coordinate Stretching Formalism
3.2 Closure of Open Microstrip Substrates
Contents
NUMERICAL EXAMPLES USING THE HYBRID MoM/FDTD
FUNCTIONS FOR LAYERED MEDIA
PERFECTLY MATCHED LAYER BASED GREEN’S
D. Vande Ginste, F. Olyslager, D. De Zutter and E. Michielssen
3.2.1 Procedure and Influence on the Green’s Functions
3.2.2 Complex Thickness
3.2.3 Dispersion Relations
10. SUMMARY
112
113
116
120
123
123
140
147
148
148
148
149
150
151
153
154
155
156
156
157
158
158
160
161
163
163
163
164
165
165
166
167
151
The Perfectly Matched Layer Concept
xi
3.3 Series Expansion for the Green’s Dyadic Gee
3.3.1 Integral Representation
3.3.2 Gee xx ,
3.3.3 Gee xy ,
3.3.4 Closed-Form Expression for Gee
3.3.5 Important Remarks Concerning the Series Expansion
4. A PML-MLMFA FOR THE MODELING OF LARGE PLANAR
MICROSTRIP STRUCTURES
4.1 Introduction and Outline
4.2 Formulation of the Technique
4.2.1 The moment Matrix Written as Interactions Between
4.2.2 Plane Wave Decomposition of the Hankel Function
4.2.3 Core Equation of the PML-MLFMA for Microstrip
Structures
4.3 Implementation of the Technique
4.3.1 Construction of the MLFMA Tree
4.3.2 The Matrix-Vector Multiplication
4.4 Some Important Remarks about the Complexity of the
PML-MLFMA
4.4.1 Memory and Computational Complexity
4.4.2 Mode Trimming
4.4.3 Determination of the Sampling Rates TX, 2 1 l Q n +
4.5 Numerical Results
4.5.1 Validation of the Method
4.5.2 Computational and Memory Efficiency
4.5.3 Application Examples
5. EXTENSIONS AND CONCLUSIONS
5.1 Extensions
5.1.1 Development of a Low-Frequency Algorithm
5.1.2 Combination of the HF- and the LF-Technique
5.1.3
5.2 Conclusions
8 Parallel Grid-enabled FDTD for the Characterization
Contents
Extension to General Multilayered Structures
L. Catarinucci, G. Monti, P. Palazzari and L. Tarricone
1. INTRODUCTION
2. INTRODUCTION TO METAMATERIALS
2.1 DNG Metamaterials
168
168
168
172
172
173
174
174
175
175
176
178
180
180
185
195
195
195
196
197
197
204
206
210
210
213
214
215
of Metamaterials 223
223
224
225
210
Elementary Current Sources
xii
3. NEGATIVE REFRACTION
4. HOW TO SYNTHESIZE A DNG MEDIUM
5. DNG MEDIA APPLICATIONS
6. MODULATED SIGNALS IN A DNG MEDIUM
6.1 Dispersion
6.2 Gaussian Pulse in a DNG Slab
7. NUMERICAL METHODS FOR METAMATERIALS
7.1 Bases for the FDTD Method
7.2 Parallel Grid-Enabled FDTD using MPI
7.3 Efficient Subgridding Technique for Parallel FDTD
Algorithms: Variable Mesh FDTD
7.4
7.5
9 A Software Tool for Quasi-Optical Systems
N. C. Albertsen, P. E. Frandsen and S. B. Sørensen
1. INTRODUCTION
2. REQUIREMENTS FOR QUASI-OPTICAL NETWORK
DESIGN
3.
4. ANALYSIS METHODS
5. USER INTERFACE - THE FRAME EDITOR
6. COMPONENTS AND OBJECTS: THE OBJECT WIZARD
7. COMPLEX COMMANDS: THE COMMAND WIZARD
8. FRAME CONNECTIONS AND 3D MODELLING
9. EVALUATION AND FUTURE EXTENSIONS
10 Cooperative Computer Aided Engineering of Antenna Arrays
A. Esposito, L. Tarricone, L. Vallone and M. Vallone
1. INTRODUCTION
2. CAE OF APERTURE ANTENNA ARRAYS
3. GRID SERVICES AND SEMANTIC GRID
4. SYSTEM ARCHITECTURE
5. THE FRAMEWORK
5.1 Introduction
5.2 Grid Infrastructure
5.3 Encapsulation into Services
Contents
FDTD Methods and DNG Materials
DNG Slabs: Reflection by and Propagation in a DNG Slab
OUTLINE OF THE SOFTWARE SYSTEM
5.4 Ontology
5.4.1 Introduction
227
228
234
236
242
236
237
242
249
250
256
257
265
265
267
271
274
276
281
283
286
291
295
295
296
297
298
301
302
301
303
306
306
xiii
5.4.2 Service Discovery
5.4.3 Service Orchestration
5.4.4 Service Binding
5.5 Client Application
5.5.1 Introduction
5.5.2 Service Discovery
5.5.3 Service Orchestration
5.5.4 Service Invocation
6.
11
D. Caromel, F. Huet, S. Lanteri and N. Parlavantzas
1. INTRODUCTION
2. DISTRIBUTED OBJECTS: PROACTIVE
2.1 Basic Model
2.2 Mapping Active Objects to JVMs: Nodes
2.3 Deployment Descriptors
2.4 Group Communications
3. OO DISTRIBUTED FINITE VOLUME SOLVER
3.1 Basic Architecture of the OO Model
3.2 Distribution and Parallelization
4.
4.1 Comparison with a Fortran Implementation
4.2 Grid’5000 Experiments
5. ON-GOING AND FUTURE WORK
5.1 Application Controlled Deployment
5.2 Enhancing Modifiability Through Components
6. CONCLUSIONS
12
1. INTRODUCTION
2. CLASSIFICATION OF PARAMETRIC PROBLEMS IN CEM
2.1 “Method-level” Parametric Analysis
Contents
C. G. Biniaris and D. I. Kaklamani
D. G. Lymperopoulos, I. E. Foukarakis, A. I. Kostaridis,
2.2 “Application-level” Parametric Analysis
2.3 Population-Based Stochastic Optimisation
Software Agents for Parametric Computational
307
309
317
320
320
322
CONCLUSIONS 323
327
327
328
328
329
329
331
332
333
335
BENCHMARKS 337
337
338
339
339
339
342
Electromagnetics Applications 345
345
347
347
348
348
320
321
Electromagnetics on the Grid
Distributed and Object-Oriented Computational
xiv
3.
3.1 The Mobile Agent Paradigm
3.2
3.2.1 The Master Agent
3.2.2 The Worker Agent
3.3 A Brief Comparison Between MAT and MPI or PVM
4.
4.1 Mobile Agent Platform Components
4.2 Communication Mechanisms
4.3 Web-Based Infrastructure
4.3.1 Interaction With the User
4.3.2 Servlets for Front/Back-End Communication
4.4 Conformal Array Modelling: A Modified Method of Auxiliary
4.4.1 Problem Formulation
4.4.2 Overview of the Model Geometry
4.4.3 Agent Deployment Mechanisms
4.4.4 Simulation Results
4.5 Electromagnetic Penetration Through Apertures: A Resonator
Method of Moments (MoM) Model
4.5.1
4.5.2
4.5.3 Performance Results
5. INTRODUCING GENETIC SOFTWARE AGENTS
5.1 Distributed Genetic Algorithms with Agents
5.1.1 Entity Mappings
5.1.2 Parallel Processing Coordination
5.2 Proposed Architecture
5.2.1 Centralised Model
5.2.2 Decentralised Model
5.2.3 Hybrid Implementations
5.3 Conclusions
13 Web Services Enhanced Platform for Distributed Signal
Processing in Electromagnetics
1. INTRODUCTION
Contents
Mobile Agents in CEM: The Master-Worker Model
FOR PARAMETRIC CEM MODELING
A WEB-BASED MOBILE AGENT PLATFORM
Sources (MMAS) Approach
I. E. Foukarakis, D. B. Logothetis, A. I. Kostaridis,
D. G. Lymperopoulos and D. I. Kaklamani
2. WEB SERVICES IN DISTRIBUTED SAR MODELLING AND
SIGNAL PROCESSING
2.1 Platform Architecture
MOBILE SOFTWARE AGENTS 349
349
351
351
352
353
355
355
357
357
358
359
360
360
362
363
364
365
365
369
369
371
372
373
374
375
375
376
376
377
381
381
382
382
Parametric Simulations
Formulation of the Electromagnetic Problem
xv
2.2 Server Services
2.2.1 Node Management Service
2.2.2 Input Provider Service
2.2.3 Output Receiver Service
2.2.4 Scheduler
2.3 Node Services
2.3.1 Resource Manager Service
2.3.2 Task Executing Service
2.3.3 Remote Input Service
2.4 Other Issues
2.5 Imaging Radar Signal Processing
2.6 The Simulation Mechanism
2.7 Results and Conclusions
14 Grid-Enabled Transmission Line Matrix (TLM) Modelling
of Electromagnetic Structures
P. Russer, B. Biscontini and P. Lorenz
1. INTRODUCTION
2. THE 3D-TLM METHOD
3. MODELLING OF DIELECTRIC MEDIA
4. PARALLELIZATION OF THE TLM METHOD
4.1 Domain Decomposition
4.2 Decomposition of the TLM Algorithm
5.
5.1 The Components of the TLM-G System
5.2 The Relation Between YATWAD, YATD
and the Components of the Globus Toolkit
in the TLM-G System
6.
6.1 The Electromagnetic Performance of the TLM-G System
6.2 A Bowtie Antenna in a TLM-G System
7. THE CIRCULAR CYLINDRICAL CAVITY RESONATOR
Contents
LINE MATRIX SYSTEM
TLM-G: GRID-ENABLED TIME DOMAIN TRANSMISSION
SYSTEM AND EXAMPLES
ANALYSIS OF THE PERFORMANCE OF THE TLM-G
Glossary
Index
385
385
387
387
387
389
389
389
390
390
390
392
394
399
399
400
411
415
415
417
422
423
424
425
426
428
425
433
451
Contributing Authors
Raed A. Abd-Alhameed
University of Bradford, UK
Niels Christian Albertsen
Informatics and Mathematical Modelling, Technical University of Denmark
Christos G. Biniaris
School of Electrical and Computer Engineering, National Technical University of Athens,
Greece
Bruno Biscontini
Technische Universität München, Munich, Germany
Denis Caromel
INRIA, France
Luca Catarinucci
University of Lecce, Italy
Daniel De Zutter
Ghent University, Belgium
Alessandra Esposito
University of Lecce, Italy
Peter Stuart Excell
University of Bradford, UK
xvii