Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

A uniqueness theorem for meromorphic mappings with hypersurfaces and without counting multiplicities
Nội dung xem thử
Mô tả chi tiết
T¹p chÝ Khoa häc & C«ng nghÖ - Sè 1(45) Tập 1/N¨m 2008
74
A UNIQUENESS THEOREM FOR MEROMORPHIC MAPPINGS
WITH HYPERSURFACES AND WITHOUT COUNTING MULTIPLICITIES
Bùi Khánh Trình (Trường Đại học Xây dựng-Hà Nội)
1. Introduction
In 1926, R. Nevanlinna [6] showed that for two nonconstant meromorphic functions f
and g on the complex plane C , if they have the same inverse images for five distinct values
then f=g. In 1975, H. Fujimoto [4] generalized the above result to the case of meromorphic
mappings of m C into n CP . Since that time this problem has been studied intensively by H.
Fujimoto, W. Stoll, L. Smiley, G. Dethloff, D. D. Thai, T. V. Tan, S. Ji, S. D. Quang, M. Ru and
others. We would like to note that their results about uniqueness problem of meromorphic
mappings of m C into n CP have been still restricted to the case of hyperplanes. The aim of this
paper is to give a uniqueness theorem for the case of hypersurfaces.
2. Preliminaries
2.1. For m
z = (z1
...,zm
) ∈C , we set
1/ 2
2
1
m
j
j
z z
=
= ∑ and define:
B r {z C z r} S r {z C z r
m m
( ) = ∈ : 〈 , ( ) = ∈ : =
( ) ( ) 1 1 2 2 1
( ), , log log
4
m m c c c c d dd z d z dd z υ σ
π
− − −
= ∂ −∂ = = ∧
Let F be a nonzero holomorphic function on m C . For a set 1
( ,..., ) α α α = n
of nonnegative
integers, we set 1 2 ... α α α α = + + + n
and
1
1
...
n
n
F
F
z z
α
α
α α
∂
=
∂ ∂
D . We define the map
( ) : max{ : ( ) 0 F
z m F z α
ν = = D for all α with α < ∈Ω m z } ( ) .
For each positive integer p (or +∞ ), we define the counting of F (multiplicities are truncated by p) by
[ ]
[ ]
2 1
1
( ) ( ): (1 )
r p
p F
F m
n t N r dt r
t
−
= < < +∞ ∫
where
[ ]
( )
( ) min{ , }.
F
p
F F
B t
n t p
ν
ν υ
∩
= ∫
for m≥ 2 and
[ ]( ) min{ ( ), } p
F
z t
n t z p ν
≤
=∑ for m = 1
2.2. Let f be a meromorphic map of m C into n CP . For arbitrary fixed homogeneous
coordinates 0
( :...: ) ω ωn
of n CP , we stake a reduced representation 0
( ,..., )
n
f f f =
ɶ
which means