Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

A generalized quasi - residual  principle in regularization for a solution of a finite system of ill-posed equations in Banach space
MIỄN PHÍ
Số trang
11
Kích thước
4.4 MB
Định dạng
PDF
Lượt xem
1807

A generalized quasi - residual principle in regularization for a solution of a finite system of ill-posed equations in Banach space

Nội dung xem thử

Mô tả chi tiết

N onlinear Functional A nalysis and A pplications

Vol. 20, N o. 2 (2015), pp. 187-197

h ttp : / /n f a a .k y u n g n a m .a c .k r /jo u r - n fa a .h tm

Copyright © 2015 Kyungna,m University Press

A GENERALIZED QUASI-RESID

IN REG U LA RIZA TIO N FOR

OF A FINITE SYSTEM OF ILL-P

IN BA N A CH SPA

N g u ye n B u o n g 1, N g u y e n T h i T h u T h u j

UAL PRINCIP

A SOLUTION

OSED EQUATIC

CES

and T ra n T h i H

I n s titu te o f In fo rm a tio n T ec dnology

V A S T , H a n o i, V ie tn a n

e-m ail: n b u o n g @ io it .|a c .

^ D e p a r tm e n t o f M a th e m a tic s , C o lleg e o f S cien ces

T h a in g u y e n U n iv e rsity , T h a in g u y »n, V ie tn a m

e-m ail: th u th u y 2 2 0 3 6 9 @ g m a L I. com

3

C o lleg e o f E c o n o m ic s a n d T e

T h a in g u y e n U n iv e rsity , T h a in g u y

e-m ail: huongkl6@ gm ai[L.

A b s t r a c t . I n th is p a p e r w e p re s e n t a g e n e ra liz e d quasi￾fo r re g u la riz a tio n p a r a m e te r in th e B ro w d e r-T ik h o n o v r

s o lu tio n o f a s y s te m o f ill-p o s e d e q u a tio n s in v o lv in g p o te n

m a p p in g s o n B a n a c h sp a c e s. A n e s tim a te o f co n v erg en ce

e s ta b lis h e d .

1. I n t r o d u c t io n

th ;

Let E be a real reflexive Banach space and

both are assumed to be strictly convex. For

E and E* are denoted by the symbol ||.|| and (a

linear and continuous functional x* € E* at the

a sequence in E, x n x means th a t { x „ } conve:

means the strong convergence.

^ R eceiv e d O c to b e r 18, 2014. R e v is e d D e c e m b e r 14, 2(

^2010 M a th e m a tic s S u b je c t C la ssific a tio n : 4 7 J0 5 , 47E i

14.

09, 4 9 J3 0 .

iro n g ly -m o n o to n e m a p p ir

ive B a n a c h sp a c e , F ré c h e t d iffe re n tia b le , B ro w d e r-T ik h o i|io v re g u la riz a tio n .

2010 M a th e m a tic s S u b je c t C la ssific a tio n : 4 7 J0 5 , 47E

°K e y w o rd s: M o n o to n e , s tr ic tly m o n o to n e , A -inverse s'

=». R a /n a n h sn a r ft. Frpr.hpf. HifFprpntia.hlp. R rn w H p r—T i V V io t

r J '& A

KLW^ss

;h n o lo g y

;n, V ie tn a m

com

■residual p rin c ip le t o sele

;g u la riz a tio n m e th o d , for

sial, h e m ic o n tin u o u s a n d

a te s fo r re g u la riz e d so lu t

E* be its dual space, w hi

sake of sim plicity, r.or:

, x ) denotes the vah.e

point x 6 E. W hen {

rges weakly to x and x^

.E

N

l o n g 1

:t

•no:

o n

vai

d in g

:io to

is a

ms

of t'

refle

u e

a

n e

sc

;h

of

îe

is

x

Tải ngay đi em, còn do dự, trời tối mất!