Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

A course in real analysis
Nội dung xem thử
Mô tả chi tiết
A Course in Real Analysis provides a rigorous treatment of the foundations of differential and integral calculus at the advanced undergraduate level.
The first part of the text presents the calculus of functions of one variable. This part
covers traditional topics, such as sequences, continuity, differentiability, Riemann integrability, numerical series, and the convergence of sequences and series of functions.
It also includes optional sections on Stirling’s formula, functions of bounded variation,
Riemann–Stieltjes integration, and other topics.
The second part focuses on functions of several variables. It introduces the topological
ideas needed (such as compact and connected sets) to describe analytical properties
of multivariable functions. This part also discusses differentiability and integrability of
multivariable functions and develops the theory of differential forms on surfaces in n
.
The third part consists of appendices on set theory and linear algebra as well as solutions to some of the exercises.
Features
• Provides a detailed axiomatic account of the real number system
• Develops the Lebesgue integral on n
from the beginning
• Gives an in-depth description of the algebra and calculus of differential forms on
surfaces in n
• Offers an easy transition to the more advanced setting of differentiable manifolds
by covering proofs of Stokes’s theorem and the divergence theorem at the
concrete level of compact surfaces in n
• Summarizes relevant results from elementary set theory and linear algebra
• Contains over 90 figures that illustrate the essential ideas behind a concept or
proof
• Includes more than 1,600 exercises throughout the text, with selected solutions
in an appendix
With clear proofs, detailed examples, and numerous exercises, this book gives a thorough treatment of the subject. It progresses from single variable to multivariable functions, providing a logical development of material that will prepare readers for more
advanced analysis-based studies.
K22153
www.crcpress.com
A
COURSE IN
REAL
ANALYSIS
A COURSE IN
REAL ANALYSIS
HUGO D. JUNGHENN
JUNGHENN
• Access online or download to your smartphone, tablet or PC/Mac
• Search the full text of this and other titles you own
• Make and share notes and highlights
• Copy and paste text and figures for use in your own documents
• Customize your view by changing font size and layout
WITH VITALSOURCE®
EBOOK
Mathematics
A
COURSE IN
REAL
ANALYSIS
K22153_FM.indd 1 1/9/15 4:46 PM
K22153_FM.indd 2 1/9/15 4:46 PM
A
COURSE IN
REAL
ANALYSIS
HUGO D. JUNGHENN
The George Washington University
Washington, D.C., USA
K22153_FM.indd 3 1/9/15 4:46 PM
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20150109
International Standard Book Number-13: 978-1-4822-1928-9 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
TO THE MEMORY OF MY
PARENTS
Rita and Hugo
Contents
Preface xi
List of Figures xiii
List of Tables xvii
List of Symbols xix
I Functions of One Variable 1
1 The Real Number System 3
1.1 From Natural Numbers to Real Numbers . . . . . . . . . . 3
1.2 Algebraic Properties of R . . . . . . . . . . . . . . . . . . . 4
1.3 Order Structure of R . . . . . . . . . . . . . . . . . . . . . 8
1.4 Completeness Property of R . . . . . . . . . . . . . . . . . 12
1.5 Mathematical Induction . . . . . . . . . . . . . . . . . . . . 19
1.6 Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Numerical Sequences 29
2.1 Limits of Sequences . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Monotone Sequences . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Subsequences and Cauchy Sequences . . . . . . . . . . . . . 38
2.4 Limits Inferior and Superior . . . . . . . . . . . . . . . . . 42
3 Limits and Continuity on R 47
3.1 Limit of a Function . . . . . . . . . . . . . . . . . . . . . . . 47
*3.2 Limits Inferior and Superior . . . . . . . . . . . . . . . . . 55
3.3 Continuous Functions . . . . . . . . . . . . . . . . . . . . . 59
3.4 Properties of Continuous Functions . . . . . . . . . . . . . 63
3.5 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 67
4 Differentiation on R 73
4.1 Definition of Derivative and Examples . . . . . . . . . . . . 73
4.2 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . 80
*4.3 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 L’Hospital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . 94
vii
viii Contents
4.6 Taylor’s Theorem on R . . . . . . . . . . . . . . . . . . . . 100
*4.7 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . 103
5 Riemann Integration on R 107
5.1 The Riemann–Darboux Integral . . . . . . . . . . . . . . . . 107
5.2 Properties of the Integral . . . . . . . . . . . . . . . . . . . 116
5.3 Evaluation of the Integral . . . . . . . . . . . . . . . . . . . 120
*5.4 Stirling’s Formula . . . . . . . . . . . . . . . . . . . . . . . 129
5.5 Integral Mean Value Theorems . . . . . . . . . . . . . . . . . 131
*5.6 Estimation of the Integral . . . . . . . . . . . . . . . . . . . 134
5.7 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . 143
5.8 A Deeper Look at Riemann Integrability . . . . . . . . . . . 151
*5.9 Functions of Bounded Variation . . . . . . . . . . . . . . . 152
*5.10 The Riemann–Stieltjes Integral . . . . . . . . . . . . . . . . 156
6 Numerical Infinite Series 163
6.1 Definition and Examples . . . . . . . . . . . . . . . . . . . 163
6.2 Series with Nonnegative Terms . . . . . . . . . . . . . . . . 169
6.3 More Refined Convergence Tests . . . . . . . . . . . . . . . 176
6.4 Absolute and Conditional Convergence . . . . . . . . . . . . 181
*6.5 Double Sequences and Series . . . . . . . . . . . . . . . . . 188
7 Sequences and Series of Functions 193
7.1 Convergence of Sequences of Functions . . . . . . . . . . . 193
7.2 Properties of the Limit Function . . . . . . . . . . . . . . . 199
7.3 Convergence of Series of Functions . . . . . . . . . . . . . . 204
7.4 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
II Functions of Several Variables 229
8 Metric Spaces 231
8.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . 231
8.2 Open and Closed Sets . . . . . . . . . . . . . . . . . . . . . 238
8.3 Closure, Interior, and Boundary . . . . . . . . . . . . . . . 243
8.4 Limits and Continuity . . . . . . . . . . . . . . . . . . . . . 248
8.5 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . 255
*8.6 The Arzelà–Ascoli Theorem . . . . . . . . . . . . . . . . . . 263
8.7 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . 268
8.8 The Stone–Weierstrass Theorem . . . . . . . . . . . . . . . 275
*8.9 Baire’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 282
9 Differentiation on R
n 287
9.1 Definition of the Derivative . . . . . . . . . . . . . . . . . . . 287
9.2 Properties of the Differential . . . . . . . . . . . . . . . . . 295
9.3 Further Properties of the Differential . . . . . . . . . . . . . 301
9.4 Inverse Function Theorem . . . . . . . . . . . . . . . . . . . 306
Contents ix
9.5 Implicit Function Theorem . . . . . . . . . . . . . . . . . . 312
9.6 Higher Order Partial Derivatives . . . . . . . . . . . . . . . 318
9.7 Higher Order Differentials and Taylor’s Theorem . . . . . . 323
*9.8 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 330
10 Lebesgue Measure on R
n 343
10.1 General Measure Theory . . . . . . . . . . . . . . . . . . . 343
10.2 Lebesgue Outer Measure . . . . . . . . . . . . . . . . . . . . 347
10.3 Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . . . 351
10.4 Borel Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
10.5 Measurable Functions . . . . . . . . . . . . . . . . . . . . . 360
11 Lebesgue Integration on R
n 367
11.1 Riemann Integration on R
n . . . . . . . . . . . . . . . . . . . 367
11.2 The Lebesgue Integral . . . . . . . . . . . . . . . . . . . . . 368
11.3 Convergence Theorems . . . . . . . . . . . . . . . . . . . . 379
11.4 Connections with Riemann Integration . . . . . . . . . . . 385
11.5 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . 388
11.6 Change of Variables . . . . . . . . . . . . . . . . . . . . . . 398
12 Curves and Surfaces in R
n 409
12.1 Parameterized Curves . . . . . . . . . . . . . . . . . . . . . 409
12.2 Integration on Curves . . . . . . . . . . . . . . . . . . . . . 412
12.3 Parameterized Surfaces . . . . . . . . . . . . . . . . . . . . 422
12.4 m-Dimensional Surfaces . . . . . . . . . . . . . . . . . . . . 432
13 Integration on Surfaces 447
13.1 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . 447
13.2 Integrals on Parameterized Surfaces . . . . . . . . . . . . . . 461
13.3 Partitions of Unity . . . . . . . . . . . . . . . . . . . . . . . 472
13.4 Integration on Compact m-Surfaces . . . . . . . . . . . . . 475
13.5 The Fundamental Theorems of Calculus . . . . . . . . . . . 478
*13.6 Closed Forms in R
n . . . . . . . . . . . . . . . . . . . . . . 495
III Appendices 503
A Set Theory 505
B Linear Algebra 509
C Solutions to Selected Problems 517
Bibliography 581
Index 583
Preface
The purpose of this text is to provide a rigorous treatment of the foundations
of differential and integral calculus at the advanced undergraduate level. It
is assumed that the reader has had the traditional three semester calculus
sequence and some exposure to elementary set theory and linear algebra. As
regards the last two subjects, appendices provide a summary of most of the
results used in the text. Linear algebra will not be needed until Part II.
The book consists of three parts. Part I treats the calculus of functions of
one variable. Here, one can find the traditional topics: sequences, continuity,
differentiability, Riemann integrability, numerical series, and convergence of
sequences and series of functions. Optional sections on Stirling’s formula,
Riemann–Stieltjes integration, and other topics are also included. As the ideas
inherent in these subjects ultimately rest on properties of real numbers, the
book begins with a careful treatment of the real number system. For this we
take an axiomatic rather than a constructive approach, guided as much by
the need for efficiency of exposition as by pedagogical preference. Of course,
presenting the real number system in this way begs the excellent question
as to whether such a system exists. It is a question we do not answer, but
the interested reader may wish to consult a text on the construction of the
real number system from the natural numbers, or even on the philosophy of
mathematics.
Part II treats functions of several variables. Many of the results in Part I,
such as the chain rule, the inverse function theorem, and the change of variables
theorem, have counterparts in Part II. The reader’s exposure to the one-variable
results should make the multivariable versions more meaningful and accessible.
As might be expected, however, some results in Part II have no counterparts in
Part I, the implicit function theorem and the iterated integral (Fubini–Tonelli)
theorem being obvious examples.
Part II begins with a chapter on metric spaces. Here we introduce the
topological ideas needed to describe some of the analytical properties of
multivariable functions. Primary among these are the notions of compact set
and connected set, which, for example, allow the extension to higher dimensions
of the extreme value and intermediate value theorems. The remainder of Part II
covers differentiability and integrability of multivariable functions. As regards
integrability, we have chosen to develop from the beginning the Lebesgue
integral rather than to the extend the Riemann integral to higher dimensions.
The additional time required for this approach is, in my view, more than offset
xi
xii Preface
by the enormous added utility of the Lebesgue integral. The last chapter of
Part II develops the theory of differential forms on surfaces in R
n. The chapter
culminates with proofs of Stokes’s theorem and the divergence theorem for
compact surfaces. It is hoped that exposure to these topics at the concrete
level of surfaces in R
n will ease the transition to more advanced courses such
as calculus on differentiable manifolds.
Part III consists of the aforementioned appendices on set theory and linear
algebra, as well as solutions to some of the over 1600 exercises found in the
text. For convenience, exercises with solutions that appear in the appendix
are marked with a superscript S. Exercises that will find important uses later
are marked with a downward arrow ⇓. Instructors with suitable bona fides
may obtain from the publisher a manual of complete solutions to all of the
exercises.
The book is an outgrowth of notes developed over many years of teaching
real analysis to undergraduates at George Washington University. The more
recent versions of these notes have been specifically tested in classes over the
last three years. During this period, the typical two-semester course closely
followed the non-starred sections of this text: Chapters 1–7 for the first semester
and 8–13 for the second. Given the wealth of material, it was necessary to
leave some proofs for students to read on their own, a not wholly unfortunate
compromise. Material in some starred sections was assigned as optional reading.
I would like to express my gratitude to the many students whose critical
eyes caught errors before they made their way into these pages. Of course, any
remaining errors are my complete responsibility. Special thanks are due to
Zehua Zhang, whose enlightened comments have improved the exposition of
several topics.
Finally, to my wife Mary for her support and understanding during the
writing of this book: thank you!
Hugo D. Junghenn
Washington, D.C.
September 2014
List of Figures
1.1 Supremum and infimum of A . . . . . . . . . . . . . . . . . 12
1.2 Greatest integer function . . . . . . . . . . . . . . . . . . . . 14
2.1 Convergence of a sequence . . . . . . . . . . . . . . . . . . . 30
2.2 Squeeze principle . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Interval halving process . . . . . . . . . . . . . . . . . . . . 39
2.4 Limits supremum and infimum . . . . . . . . . . . . . . . . 42
3.1 Limit of a function . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 L can’t be greater than M . . . . . . . . . . . . . . . . . . . 53
3.3 One-to-one correspondence between D and Q . . . . . . . . . 61
3.4 Intermediate value property . . . . . . . . . . . . . . . . . . 64
4.1 Trigonometric inequality . . . . . . . . . . . . . . . . . . . . 74
4.2 Local extrema . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Mean value theorems . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Convex function . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Convex function inequalities . . . . . . . . . . . . . . . . . . . 87
4.6 Intermediate value property implies monotonicity . . . . . . 89
4.7 Intermediate value property implies continuity . . . . . . . . 89
4.8 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1 Upper and lower sums . . . . . . . . . . . . . . . . . . . . . 108
5.2 The partitions P and Q . . . . . . . . . . . . . . . . . . . . 110
5.3 The partition Pn . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 The partitions P
0
, P, and P
00
. . . . . . . . . . . . . . . . . 112
5.5 Riemann sum . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6 The partitions P
x and P
y
. . . . . . . . . . . . . . . . . . . 122
5.7 Trapezoidal rule approximation . . . . . . . . . . . . . . . . 136
5.8 Midpoint rule approximation . . . . . . . . . . . . . . . . . . . 137
5.9 Simpson’s rule approximation . . . . . . . . . . . . . . . . . 139
5.10 The partition Q . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.1 Uniform convergence . . . . . . . . . . . . . . . . . . . . . . 193
7.2 Pointwise convergence insufficient . . . . . . . . . . . . . . . . 201
xiii
xiv List of Figures
8.1 An open ball is open . . . . . . . . . . . . . . . . . . . . . . 239
8.2 The functions gn and g . . . . . . . . . . . . . . . . . . . . . 240
8.3 Convex and non-convex sets . . . . . . . . . . . . . . . . . . . 241
8.4 The neighborhoods Ux and Vx . . . . . . . . . . . . . . . . . 255
8.5 A 2ε net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
8.6 A bounded set in R
n is totally bounded . . . . . . . . . . . . 257
8.7 A separation (U, V ) of E . . . . . . . . . . . . . . . . . . . . 268
8.8 C1(−1, 0) ∪ C1(1, 0) is path connected . . . . . . . . . . . . . 271
8.9 E is path connected . . . . . . . . . . . . . . . . . . . . . . . 272
8.10 A piecewise linear function . . . . . . . . . . . . . . . . . . . 276
8.11 Sawtooth function . . . . . . . . . . . . . . . . . . . . . . . . 285
9.1 The domain of argθ0
. . . . . . . . . . . . . . . . . . . . . . 310
9.2 Saddle point . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
10.1 Interval grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
10.2 Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
10.3 Middle thirds . . . . . . . . . . . . . . . . . . . . . . . . . . 353
10.4 Ternary expansion algorithm . . . . . . . . . . . . . . . . . . 354
10.5 Decomposition into half-open intervals . . . . . . . . . . . . . 357
10.6 K = cl(E) \ U . . . . . . . . . . . . . . . . . . . . . . . . . . 358
10.7 The components of fk . . . . . . . . . . . . . . . . . . . . . 363
10.8 The components of fk+1 . . . . . . . . . . . . . . . . . . . . 363
11.1 Partition of an n-dimensional interval . . . . . . . . . . . . . . 367
11.2 Three-dimensional simplex . . . . . . . . . . . . . . . . . . . 390
11.3 Concentric cube and ball . . . . . . . . . . . . . . . . . . . . 402
11.4 The paving Qr . . . . . . . . . . . . . . . . . . . . . . . . . 403
11.5 Theorem of Pappus . . . . . . . . . . . . . . . . . . . . . . . 408
12.1 Curves in R
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . 409
12.2 A piecewise smooth curve with tangent vectors . . . . . . . 410
12.3 Inscribed polygonal line . . . . . . . . . . . . . . . . . . . . 412
12.4 Vector field on E . . . . . . . . . . . . . . . . . . . . . . . . 416
12.5 Closed curve ϕ . . . . . . . . . . . . . . . . . . . . . . . . . 418
12.6 Concatenation of curves . . . . . . . . . . . . . . . . . . . . 419
12.7 Tangent spaces at p . . . . . . . . . . . . . . . . . . . . . . . 422
12.8 Affine space . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
12.9 The inward unit normal . . . . . . . . . . . . . . . . . . . . . 427
12.10 Normal vector to S at p . . . . . . . . . . . . . . . . . . . . . 427
12.11 Surface of revolution . . . . . . . . . . . . . . . . . . . . . . 429
12.12 Möbius strip . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
12.13 The mapping G−1
a . . . . . . . . . . . . . . . . . . . . . . . . 434
12.14 Transition mappings . . . . . . . . . . . . . . . . . . . . . . 435
12.15 Stereographic projection . . . . . . . . . . . . . . . . . . . . 436
12.16 The mapping dψx . . . . . . . . . . . . . . . . . . . . . . . . 438